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Abstract

Factorizations of probabilistic distributions serve as condensed and
efficient representations for modeling problems with uncertainty. In prob-
abilistic graphical models, it is generally assumed that factorizations are
consistent with a graphical structure which simplifies the probabilistic
structure by exploiting the conditional independences present in the dis-
tribution. In this work we focus con Markov networks, a subtype of graph-
ical models where the graphical structure is an undirected graph, and the
factorization is characterized over the maximal cliques of the graph, ac-
cording with the well-known Hammersley-Clifford Theorem. When using
that factorization, factors may correspond to the maximal cliques and
overlappings of a junction tree. The semantics of a junction tree guar-
antees that if marginals are consistent, whatever the accuracy of the ap-
proximation, the factorization will produce a valid probability distribution
(e.g. the sum of the values associated by the factorization to all possible
states of the system will add to 1). However, the number of junction trees,
and thus the number of (consistent) factorizations that can be obtained
from them is relatively small in comparison with all possible products
of marginal distributions, including those not necessarily producing valid
factorizations. In this work we investigate, from different perspectives, the
quality of marginal factorizations as approximations of probability distri-
butions. In particular, our analysis is focused on the Clique-based Kikuchi
approximations (CBKA), a particular type of factorization in probability
marginals. In this type of factorization, the marginals are completely
determined by the independence graph. Our general goal is to identify
whether, and under which conditions, the CBKA can produce accurate
or acceptable approximations of an original probability distribution. We
show that the class of CBKA includes a much larger set of approximations
than those derived from junction trees (or equivalently, chordal graphs).
Additionally, we show that the quality of CBKA can be measured by us-
ing the Kendall tau rank distance, a measure which considers scenarios
where the values produced by the factorizations are mainly relevant to
compare or rank the configurations of the system. We analyzed the qual-
ity of CBKA in terms of the Kendall distance and also in terms of the
Kullback-Liebler divergence, and show that both measures are correlated.
Our current results show that such correlation depends on the structure of
the underlying distribution, and also on the strength of the dependences,
e.g., α parameter of Dirichlet for synthetic distributions.
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1 Introduction

Factorizations of probabilistic distributions serve as condensed and efficient rep-
resentations for modeling problems with uncertainty. In simple terms, a fac-
torization is a product of marginal factors that serves to approximate a Joint
Probability Distribution (JPD). Usually, a factorization involves factors of much
smaller size than that of the full JPD, guaranteeing that the factorizations are
tractable in terms of the number of parameters needed to keep all marginal
probabilities.

In probabilistic graphical models, it is generally assumed that factoriza-
tions are consistent with a graphical structure which simplifies the probabilistic
structure by exploiting the conditional independences present in the distribution
[Pearl, 1988]. The two branches of graphical models that are more commonly
used are Bayesian networks and Markov networks [Koller and Friedman, 2009].
For the particular case of Bayesian networks, the structure is an acyclic di-
rected graph, and the JPD factorizes over a product of conditional probability
distributions in a compact and modular way. For Markov networks (MNs) the
graphical structure is an undirected graph, and the factorization is characterized
over the maximal cliques of the graph, according with the Hammersley-Clifford
Theorem [Besag, 1974, Lauritzen, 1996]. When using that factorization, factors
may correspond to the maximal cliques and overlappings of a junction tree. The
semantics of a junction tree guarantees that if marginals are consistent, what-
ever the accuracy of the approximation, the factorization will produce a valid
probability distribution (e.g. the sum of the values associated by the factoriza-
tion to all possible states of the system will add to 1). However, the number
of junction trees, and thus the number of (consistent) factorizations that can
be obtained from them is relatively small in comparison with all possible prod-
ucts of marginal distributions, including those not necessarily producing valid
factorizations.

In this work we investigate, from different perspectives, the quality of marginal
factorizations as approximations of probability distributions. In particular,
our analysis is focused on the Clique-based Kikuchi approximations (CBKA)
[Santana et al., 2005], a particular type of factorization in probability marginals.
In this type of factorization, the marginals are completely determined by the
independence graph. Given an undirected graph, a unique CBKA is completely
determined by computing the maximal cliques of the original graph, and then
the cluster variation method is used to compute all possible overlappings. If
the original graph is chordal, the obtained CBKA will be consistent with a
junction-tree-based factorization. Our general goal is to identify whether, and
under which conditions, the CBKA can produce accurate or acceptable approxi-
mations of an original probability distribution. We show that the class of CBKA
includes a much larger set of approximations than those derived from junction
trees (or equivalently, chordal graphs).

The following questions are addressed in our research1:

1The results obtained until now could be splitted in different of these lines. Actually, what
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(i) We consider different measures of “quality” of the approximation. These
measures include the Kullback-Leibler (KL) divergence, usually applied to
measure distances between distributions, but also the Kendall tau rank
distance, a measure used to evaluate the distances between rankings or
permutations. The KL divergence is commonly used to measure the dif-
ference between two probability distributions. Thus, we compare the JPD
from a CBKA with the original distribution in order to quantify how sim-
ilar they are. Instead, the Kendall tau rank distance considers scenarios
where the values produced by the factorizations are mainly relevant to
compare or rank the configurations of the system. What is important in
these cases is the capacity of the approximation to keep the relative or-
der between the solutions of the space, not the distance to the original
distribution in the KL sense. Notice that there exist multiple realistic
situations in which we would like to be able to rank solutions with large
number of attributes based on statistics computed from smaller subsets
of these attributes. We analyze the quality of CBKA in terms of both
quality measures, and show that they are correlated. Our current results
show that such correlation depends on the structure of the underlying dis-
tribution, and also on the strength of the dependences, e.g., α parameter
of Dirichlet for synthetic distributions.

(ii) We also investigate the relationship between general CBKAs and those
that originate from chordal graphs using a measure of topological prox-
imity among all possible approximations for a given number of variables
n. The topological relationship is defined in terms of the subsumption
relatioship among all possible undirected graphs for a given n. What we
get from this topological relationship is a landscape of the CBKAs, where
it is possible to identify which regions in the space of CBKA contain more
chordal CBKAs and whether and how are they related. Although we do
not develop in this work algorithms to learn CBKAs from the data, we
hypothesize that this landscape could be instrumental for the design of
this type of algorithms.

(iii) Finally, since CBKA are strongly dependent on the characteristic of the
graph used to create the approximation, we are also interested in inves-
tigating the sensitivity of the CBKAs to structural errors. Specifically,
we want to know how the chordality (or non-chordality) of the underlying
structure affects to the robustness of the CBKA when using graphs which
contain structural errors. For this, we consider two different types of er-
rors that can be present in a structure: type-I errors and type-II errors.
Type-I errors (a.k.a. false positives) correspond to additional incorrect
edges added to the structure, assuming inexistent dependences between
variables. Type-II errors (a.k.a. false negatives) correspond to incorrect
independences assumptions, or spurious non-edges in the structure used

we are trying to do is to organize these results with respect to what could be the possible
objectives of the work. We could discuss later what is the first thing we should try to finish
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Figure 1: Description of the different types of errors. (a) Undirected graph
representing the independence structure of a distribution, (b) Graph containing
three type-I errors, (c) Graph that contains two type-II errors.

(i.e., assuming independence between two variables that are dependent
in the underlying distribution). Figure 1 shows an example of the differ-
ent types of errors. If the first graph is the underlying correct structure
of a distribution, the second graph contains three type-I errors, and the
third graph contains two type-II errors. Regarding the correctness of the
distribution, type-I errors do not make incorrect assumptions over the
functional form of the underlying distribution, because the independences
in the structure still hold. That is, type-I errors may be mitigated by the
numerical parameters of the graphical model. The problem with type-I
errors is that they imply the use of an overcomplex model to represent
the distribution. Instead, type-II errors add incorrect independence as-
sumptions on the distribution, and these errors cannot be mitigated by
the numerical parameters. Thus, type-II errors can invalidate statistical
inference, leading to faulty conclusions.

This paper is organized as follows2: In the next section we present the
notation and main concepts used for our analysis. Section 3 describes the quality
measures of the approximation used, and analyzes the relationship between
them. Section 4 defines the landscape of CBKAs and analyze it. In Section 5
we investigate the results for the analysis of the different types of errors. Finally,
Section 7 lists the open questions and some ideas to extend this work.

2 Notation and background

Let X = (X0, . . . , Xn−1) denote a set of n discrete random variables. We will
denote x = (x0, . . . , xn−1) to an assignment of these variables. S will denote a
set of indices in {0, . . . , n − 1}, XS (respectively xS) a subset of the variables
of X (respectively x) determined by the indices in S, and val(XS) to the set of
all possible values of XS . We will work with positive distributions denoted by
p. We use p(XS) to denote the marginal probability distribution of p on XS .
p(xS) will denote the marginal probability for XS = xS . We use p(Xi|Xj) to
denote the conditional probability distribution of Xi given Xj .

2This is a suggested organization for all the results during the visit, including those included
here
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An undirected graph G = (V,E) is defined by a set of vertices V , and a set
of edges E. An edge between nodes i and j will be represented by i ∼ j. Given
an undirected graph G = (V,E), a clique in G is a fully connected subset of V .
We reserve the letter C to refer to a clique. The collection of all cliques in G is
denoted as C. C is maximal when it is not contained in any other clique. C is
the maximum clique of the graph if it is the clique in C with the highest number
of vertices.

An undirected graph is said to be chordal if every cycle of length four or more
has a chord. A fundamental property of chordal graphs is that their maximal
cliques can be joined to form a tree, called the junction tree, such that any two
cliques containing a node are either adjacent in the junction tree, or connected
by a chain made entirely of cliques that contain that node.

2.1 Markov networks

Definition 1. (Neighborhood): The neighborhood N(Xi) of a node Xi ∈ X is
defined as N(Xi) = {Xj : Xj ∼ Xi ∈ E}. The set of edges uniquely determines
a neighborhood system on G.

Definition 2. (Boundary, bd): The boundary of a set of variables, XS ⊆ X is
the set of variables X \XS that neighbors to at least one variable in XS. The
boundary of XS is denoted bd(XS).

Definition 3. (Closure, cl): The closure of a set of variables, XS ⊆ X is the
set of variables cl(XS) = XS ∪ bd(XS).

Definition 4. A Markov Network (MN) for X is a pair (G,Φ) where G is
an undirected graph, and Φ = (ΦC1

, . . . ,ΦCc
) is a set of nonnegative functions

called neighbor potentials, one for each of the c maximal cliques in G. The
distribution determined by the MN has the form:

p(x) =
1

Z

∏
C∈C

(ΦxC
) (1)

and it is usually called a Gibbs Field with respect to the neighborhood system G.
The normalizing constant Z is known as the partition function and is given by
Z =

∑
X

∏
C∈C

(ΦXC
).

A MN fulfills a number of Markov properties. It satisfies that:

p(xi, x/cl(xi)|bd(xi)) = p(xi|bd(xi)) · p(x/cl(xi)|bd(xi))

This property is known as the local Markov property [Lauritzen, 1996].

2.2 Statistical inference with Markov networks

Belief propagation [Pearl, 1988, Aji and McEliece, 2000] has been traditionally
used in statistical inference for obtaining a posteriori marginal probabilities in
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graphical models. The approach is also useful to compute the most probable
global states or system configurations [Nilsson, 1998]. The conection between
belief propagation algorithms and free energy approximations in physical sys-
tems was presented in [Yedidia et al., 2003]. Yedidia et al. demonstrated that
the fixed points of belief propagation algorithms coincide with the stationary
points of Bethe’s approximate free energy subject to certain consistency con-
straints. Bethe’s approximation is known to be a special case of a more general
class of approximations called Kikuchi free energy approximations. This result
inspired an important amount of work [Minka, 2001a, Wainwright et al., 2001,
Yuille, 2001, Tatikonda and Jordan, 2002, Heskes, 2003, Aji and Yildirim, 2003,
Wainwright and Jordan, 2003, Pakzad and Anantharam, 2005, Yedidia et al., 2005,
Wainwright and Jordan, 2008, Ravikumar et al., 2010, Weiss et al., 2012, Chen and Wang, 2012]
that proposed new Generalized Belief Propagation algorithms (GBP), studied
their conditions of convergence, and introduced new applications.

Belief propagation can be generalized by considering algorithms able to ap-
proximate marginals in graphs with cycles, also known as loopy graphs. The
original belief propagation algorithm was theoretically proved to converge only
in acyclic graphs. One common point in recent work on GBP is the reexami-
nation and application of some old results achieved in statistical physics to the
solution of inference problems in graphical models. Among these results is the
Cluster Variation Method (CVM) [Kikuchi, 1951] introduced by Kikuchi in 1951
as a procedure to compute an approximation of the free energy. The algorithm,
also known as the Kikuchi approximation of the free energy, has been used for
the design of generalized propagation algorithms.

Generalized propagation algorithms assume that the structure of the graph-
ical model is known, and organize the message passing steps for achieving an
(eventually) good approximation of the desired marginal distributions. Meth-
ods from statistical physics are useful to determine the way message passing has
to be organized and the conditions of convergence. The Kikuchi approximation
has been used for two different although related problems: the problem of learn-
ing factorized approximations of probability distributions from data, and that
of sampling from such type of approximations [Santana, 2005]. In this sort of
application, the information about the structure of dependencies represented in
the graphical model is totally absent or partial3.

2.3 Kikuchi approximations

We define a region R of the independence graph G = (V,E) to be a set V ′ ⊂ V .
A graph region based decomposition is an asset of regions R, and an associated
set of counting numbers U which is formed by one counting number cR for each
R ∈ R. cR will always be an integer, but might be zero or negative for some
R. In the Cluster Variation Method (CVM), R is formed by an initial set of
regions R0 such that all the nodes are in at least one region of R0, and any

3In a new version of the manuscript this part has to be more related with the proposal we
advance here in the paper (see To do section at the end of this manuscript)

6



other region in R is the intersection of one or more of the regions in R. The set
of regions R is closed under intersection, and can be ordered as a poset.

To be valid, a decomposition must satisfy a number of constraints relating
the regions and the counting numbers. Inspired in the work by Yedidia et al.
(2005) [Yedidia et al., 2005], we call this sub-problem as that of finding a valid
region based decomposition of a graph. We say that a set of regions R, and
counting numbers cR give a valid region based graph decomposition when for
every variable Xi: ∑

R∈R
Xi⊆XR

cR = 1 (2)

We will form the set R0 by taking one region for each maximal clique in G.
As a result, all the regions R ∈ R will be cliques because they are the intersection
of two or more cliques. We call this type of region based decomposition of
undirected graphs a CBKA [Santana et al., 2005].

We define the Kikuchi approximation of the probability associated to a clique
based graph decomposition, denoted as k as:

k(x) =
∏
R∈R

p(xR)cR , (3)

where R comes from a clique based graph decomposition. The overcounting
numbers cR are calculated using the following recursive formula:

cR = 1−
∑

S∈R1
S⊃R

cS (4)

where cS is the overcounting number of any region S in R1 such that S is
a superset of R. cR values corresponding to the initial maximal cliques are
equal 1. If cR is different from zero, the region is included in the clique based
decomposition. 4

2.4 Quality measures

As quality measures, we evaluate if k(x) is a good approximation of the original
JPD by two different measures: (i) The Kullback-Leibler divergence KL(K|P );
and (ii) the Kendall tau rank distance.

For two discrete probability distributions p(x) and q(x), the Kullback–Leibler
divergence [MacKay, 2003] from q(x) to p(x) is defined to be

KL(P |Q) =
∑
i

p(i) log
p(i)

q(i)
. (5)

In words, it is the expectation of the logarithmic difference between the probabil-
ities p(x) and q(x), where the expectation is taken using the probabilities p(x).

4to do: add definition of Normalized Kikuchi approximation k̃(x)
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This is a measure of the difference between the two probability distributions
p(x) and q(x). It is not symmetric in p(x) and q(x).

The other quality measure we are interested for evaluating the quality of the
approximaated distributions obtained is the Kendall tau rank distance. This
metric counts the number of disagreements between two ranking lists. The
larger the distance, the more dissimilar the two lists are. The Kendall tau
ranking distance between two lists is

K(τ1, τ2) =
∑
{i,j}∈P K̄i,j(τ1, τ2), (6)

where P is the set of unordered pairs of distinct elements in τ1 and τ2, K̄i,j(τ1, τ2)
= 0 if “i” and “j” are in the same order in τ1 and τ2 K̄i,j(τ1, τ2) = 1 if “i” and “j”
are in the opposite order in τ1 and τ2. For measuring the quality of the CBKA,
we form the two lists τ1 and τ2 by sorting in descending order the configurations
of the JPD, according with its respective probability, and then the number of
disagreements is counted.

2.5 Storage cost of CBKAs

The storage cost of each CBKA clearly depends on the number of cliques, their
size, and more important, the number of overlappings among the variables. The

number of comparisons needed to find the first set of overlappings is (µ)(µ−1)
2 ,

where µ is the number of maximal cliques. The process is repeated taking this
maximum number of regions as a bound. A good estimator of the total number

of regions can be Nr = |C| · (µ)(µ−1)2 , where |C| is the size of the maximum
clique in the graph. However, for storing a CBKA we only need to save the
maximal cliques of the graph, and then the rest of overlapping regions can be
found recursively. Thus, we compute the cost of storing a CBKA as

cost(G) =
∑

C∈C(G)

 ∏
val(XC)

|XC |

 , (7)

where configs(c) is the set of all the possible configurations of the variables of
a clique and |c| is the size of each clique.

In order to identify whether and under which conditions the CBKA can
produce accurate or acceptable approximations of an original distribution, we
consider the storage cost associated with a given quality. In Figure 2, a table
of plots show the distribution of storage cost for binary problems with 4, 5
and 6 variables (in different columns). The green (red) bars correspond to the
number of chordal (non-chordal) graphs that exist for each possible storage cost.
As shown in the next section, the number of possible undirected graphs grows

super-exponentially, as 2(n
2), and the number of chordal graphs grows much

more slowly than the number of non-chordal graphs. Thus, both chordal and
non-chordal graphs have different distributions of costs, and their distributions
change in a different way with the number of variables5.

5Roberto asked me to include all our results. We need to complete this analysis over costs.
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Figure 2: Cost of storing initial regions for n=4,5,6 (columns) for binary vari-
ables

3 Correlation between KL-divergence and Kendall
distance measures

In this section we address the research question (i), about the relationship be-
tween two different measures of quality that can be used for CBKA. The specific
question to investigate is about the correlation betweeen both quality measures.
By looking at this correlation we expect to answer if it is possible to design
novel methods based on the Kendall tau rank distance. Since in the literature
the KL is probably as ubiquitous in algorithms for minimizing the energy, we
want to know if it is possible to design methods based on choices of the energy
designed from the definition of the Kendall distance.

The quality measures used are the Kullback-Leibler (KL) divergence and the
Kendall tau rank distance. We show first how we generated the simulated distri-
butions. Then, we describe a first experiment which shows how the correlation
between both measures is clearly affected by the strength of the dependences
when using arbitray specific independence structures. Finally, we present a
systematic experiment for low-dimensional domains, where the Pearson’s corre-
lation coefficient between both quality measures is computed for all the possible
cases.

3.1 Simulated distributions

For a specific domain size n, a JPD (joint probability distribution) is randomly
generated. We consider distributions on n random binary variables. We assume
that the independence structure of the distribution is given by a graph. For
this, an arbitrary graph G with n nodes must be chosen. Then, the set with
all the maximal cliques C is computed with the Bron and Kerbosh algorithm
[Bron and Kerbosch, 1973].

I can optimize the code to generate the histograms for larger domains. I think we can show
two graphs: one graph for the distribution over chordal graphs and other over non-chordal
graphs. At each one, we can summarize the results with one curve for different n values (e.g.,
n = {4, 6, 8, 10, 12}). I included this in the TO DO list of the last section in this running
paper
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Once all the cliques have been found, the numerical parameters Φ for each
corresponding clique factor is randomly drawn from a Dirichlet distribution.
The Dirichlet distributions is used as a prior distribution for our discrete vari-
ables, in order to generate a multinomial distribution for each clique factor.
The α parameter of the Dirichlet distribution is an input parameter that indi-
cates the strength of the dependences between the factor variables. Then, at
some point, the CBKA has to be computed for all the possible structures of the
landscape.

3.2 Correlation for arbitrary cases

In this section we show a preliminar experiment performed in order to show
how both measures, KL-divergence and Kendall tau rank distance, are corre-
lated. The experiment consists in computing systematically the CBKA for all
the possible graphs, in distributions where the independence structure is arbi-
trary selected. Finally, the KL-divergence and the Kendall tau rank distance is
computed for each graph. Since the space contains non-chordal structures, we
compute normalize the JPD before the KL computation.

Although we have results for many structures, in this report we only show
three specific cases with n = 6 variables: the fully graph, a ring graph, and
an empty graph. To produce weak, uniform and strong dependences for each
structure, the original distribution were generated as indicated in the previous
section by using α = {0.1, 1.0, 100.0} for the Dirichlet prior. Figure 3 shows
three scatter plots for each class of dependence pattern investigated (one for
each α value). The plots show chordal structures by a green circle, and non-
chordal structures by a red triangle. In the x-axis, the structures are disposed
by the KL-divergence obtained. In the y-axis, they are disposed by the Kendall
tau rank distance.

When analyzing Figure 3, it is clear that for the three cases the two quality
measures are correlated. For the structures with greatest KL-divergence, the
Kendall tau rank distance seem to have its maximum value, and the same occur
with the lowest KL-divergence structure. Additionally, the correlation seem to
be sensitive to the structure, since the three cases exhibit a different shape of
the correlation. Also, the correlation is clearly affected by the strength of the
dependences in the simulated MNs, since the correlation is more shaped as well
as α increases.

These first results gave us the insight that the correlation between both
quality measures depend on the structure of the underlying distribution, and
also on the strength of the dependences, i.e., α prior of Dirichlet distribution. In
the next section, a more systematic experiment over all the possible structures
for each domain size is shown.
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Figure 3: This scatter diagram graphs pairs the Kl-divergence (x-axis) with the
Kendall distance (y-axis). Each column correspond to a different α value, i.e.
stronger dependences in the underlying model. Each row show different study
cases, that is different graph structures in the underlying distribution. The
variables tend to be correlated for α ≥ 1, since the points will fall along a line.
The higher the number of strong dependences in the underlying structure, the
tighter the points hugs the line. 11



α = 0.1 α = 1.0 α = 100.0

Figure 4: Pearson’s correlation coefficient betweeen KL-Kendall distances for
all the possible subgraphs (n = 4 in the first row, and n = 5 in the second row)

3.3 Pearsons correlation coefficient between KL-divergence
and Kendall tau rank distance measures

In this section, the experiment made in the previous part is performed for all the
possible arbitrary structures of a specific domain size. That is, a distribution has
been created for each possible graph of size n, and then the KL-divergence and
Kendall tau rank distance of all the possible CBKA have been computed and
saved for each case. The goal is to analyze the correlation between both mea-
sures (KL-divergence and Kendal distance) for all possible graphs. For this, the
Pearson product-moment correlation coefficient is used here as a measure of the
linear dependence between both quality measures. Such coefficient takes values
between [−1,+1], where where 1 corresponds to total positive linear correlation,
0 is no linear correlation, and −1 is a total negative linear correlation.

Figure 4 shows the results of the experiment for n = 4 (first row), and for
n = 5 (second row). For each domain size the experiment has been performed by
using α = {0.1, 1.0, 100.0} for the Dirichlet prior. The plots dispose in the x-axis
each possible distribution by the storage cost of the underlying structure, and
show the Pearson’s correlation between both quality measures in the y-axis.
Here, the Pearson’s coefficient is shown with a green circle for distributions
where the underlying structure is chordal, and a red triangle for distributions
where the underlying structure is non-chordal.

Clearly, the two different quality measures are correlated, since in all the
plots the coefficient is positive more often than not. For n = 4, only three
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distributions with non-chordal structures exist, and for this case the correlation
is near to zero when α = 0.1, and positive for greater α values. For n = 5,
20% of the CBKAs have a non-chordal structure. There are some isolated cases
where there is no linear correlation (near to zero), but the value is positive or
negative for most cases. In general, there is a clear tendency to appear more
positive correlations as well as α increases6.

It confirms our hypothesis that the correlation is sensitive to the structure.
Also, the correlation is clearly affected by the strength of the dependences in
the simulated MNs (α value)7. This results indicates that the tau rank distance
obtained from CBKAs can be used as a surrogate of the KL divergence measure,
when medium and strong dependencies exist in the underlying model.

4 A landscape of factorizations

In this section we address the research question (ii) of the introduction, con-
cerned about the relationship between general CBKAs and those that originate
from chordal graphs using a measure of topological proximity among all possi-
ble approximations for a given number of variables n. We define the topological
relationship in terms of the subsumption relatioship among all possible undi-
rected graphs for a given n. In this way, we get a landscape of the CBKAs,
where it is possible to identify which regions contain more chordal CBKAs and
whether and how are they related. In this work we do not develop algorithms
to learn CBKAs from the data, but we hypothesize that this landscape could
be instrumental for the design of this type of algorithms.

Let G denote the space of all the possible undirected subgraphs with n nodes.

The size of the space G grows super-exponentially, as 2(n
2). Instead, the num-

ber of chordal graphs grows much more slowly [Wormald, 1985], following the

formula an = cn + 1
n

n−1∑
k=1

k
(
n
k

)
ckan−k. Table 1 shows the percentage of chordal

graphs over the total size of the graphs space, and it can be seen that its propor-
tion tends to zero for relatively small problems (n ≥ 8). Figure 6 illustrates such
proportion in comparison with the percentage of non-chordal graphs (which op-
positely, tends to one). As an additional example, the complete landscape for
domains of size n = {4, 5, 6} are shown in the hypercubes of Figure 5, where each
node is a graph of the landscape, blue nodes are the chordal graphs, red nodes
are non-chordal graphs, the structure on the top of the figure is the fully graph,
the structure on the bottom is the empty graph, and edges connect neighbor
graphs (graphs that only differ in one edge). Such hypercubes can be seen as
alternative, more formal view of the fitness landscape of CBKAs, particular to
search algorithms [Jones, 1995].

6It would be interesting to study why in some particulra cases the correlation appear to
be negative.

7This experiment is really expensive to perform for higher domains, but I can optimize the
code to generate similar results for higher domains
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Figure 5: Distribution of non-chordal graphs (big, red) and chordal graphs
(small, blue) on the landscape of graphs with n=4,5,6 variables
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n 2

(
n
2

)
chordal graphs percentage (%)

1 1 1 100.000
2 2 2 100.000
3 8 8 100.000
4 64 61 95.310
5 1024 822 80.270
6 32768 18154 55.400
7 2097152 617675 29.450
8 268435456 30888596 11.500
9 68719476736 2192816760 3.190
10 35184372088832 215488096587 0.610
11 3,6028797018964E+016 28791414081916 0.070
12 7,37869762948382E+019 5165908492061926 0.007

Table 1: Number of possible CBKAs, chordal graphs and percentage of chordal
graphs over the total for n ∈ {1, . . . , 12}.

Figure 6: Percentage of chordal and non-chordal graphs in the complete space

of 2(n
2) graphs for graph sizes n ∈ {1, . . . , 12}.
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GIc GIIc GInc GIInc {G∗}

G
Gc \ {G∗} Gnc \ {G∗}

Figure 7: Space of all posible graphs G, partitioned in chordal and non-chordal
classes, and grouped by type I and type II errors, together with the solution.

We will denote Gc to the set of all chordal graphs, Gnc to the set of all non-
chordal graphs, and G∗ to the structure of the underlying distribution. Then, we
know that G = Gc ∪ Gnc, and Gc

⋂
Gnc = ∅. Moreover, when choosing a specific

structure G ∈ G to compute the CBKA, it can have type-I errors and/or type-II
errors. Thus, we will call GIc to the chordal graphs with type-I erros, GIIc to the
chordal graphs with type-II erros, GInc to the non-chordal graphs with type-I
erros, and GIInc to the non-chordal graphs with type-II errors.

The landscape of all CBKAs can be partitioned as follows:

G = {G∗} ∪ GIc ∪ GIIc ∪ GInc ∪ GIInc. (8)

The Venn diagram of Figure 7 illustrates this partition. Note that the size of
the circles in such diagram is not proportional to size of the sets. In fact, the
respective size of such sets depends on n and the specific solution structure G∗.

5 Sensitivity of the clique-based Kikuchi Ap-
proximation

In this section we address the research question (iii) of the introduction, con-
cerned about the sensitivity of the CBKAs in terms of their chordality, and
its robustness to type-I errors and type-II errors. For this, we present in this
section an experiment for answering the following questions:

(a) Should we expect a different quality for CBKAs when G∗ ∈ Gc, in contrast
for those cases when G∗ ∈ Gnc?

(b) When G∗ is unknown, is it always better to choose a chordal graph than
a non-chordal graph? Or are there some cases where non-chordal graphs
exhibit better performance?

(c) Is there some measure correlated to the quality of CBKA? (for example,
some aspect of chordality, number of edges, number of cycles, etc.)
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(d) When computing CBKAs with a structure G, can we say that type-I
errors have a different impact than type-II errors in the quality of the
approximation? Could we see some proportion? (How many type-I errors
are equivalent in terms of KL or Kendall distance to type-II errors?)

5.1 Approximations from a MN structure

This section presents an experiment for measuring the quality of chordal an
non chordal structures when the underlying distribution have a specific MN
structure. For this, for an arbitrary graph, a MN were generated as explained in
Section 3.1. Then, the CBKA has been computed for all the possible subgraphs
of the landscape G ∈ G. For each subgraph, the normalized KL-divergence
and the Kendall tau rank distance measures were computed from the original
distribution. Since the number of subgraphs grow exponentially, only the CBKA
that are found as Pareto optimal solutions are shown. The Pareto optimal
solutions were selected in terms of the KL over the storage cost, and in terms of
the Kendall tau rank distance over the storage cost. By restricting attention to
the set of choices that are Pareto-efficient, we can analyze the tradeoffs within
this set, rather than considering the complete landscape of CBKA.

Figure 8 shows the results for an experiment for domains with n = 6 vari-
ables. We generated a Markov network for the 4 different graphs shown in the
first column of each row. The CBKA that are found as Pareto optimal solu-
tions in terms of the KL over the storage cost are shown in the second column.
The third column show the Pareto optimal solutions in terms of the Kendall
tau rank distance. These plots show only the Pareto optimal graphs, sorted
by their storage cost in the x-axis. Those results can answer question (a) by
looking if the Pareto optimal graphs are chordal (green circles) or non-chordal
(red triangles). The graph of the third column shows Pareto optimal CBKAs,
but in terms of the Kendall tau rank distance to the original distribution.

For the graphs of the first and fourth row of Figure 8, the underlying struc-
ture is chordal (G∗ ∈ Gc), and the graphs of the second and third row, the
underlying structure is non-chordal (G∗ ∈ Gnc). When analyzing these results,
it can be seen that the best solution is in most cases a CBKA over a chordal
graph (green dots has lower KL), but also appear several interesting cases, where
the best solution is non-chordal (red triangles). In the fourth row, all the struc-
tures have KL = 0. This was an expected result, that demonstrates that the
type-II errors have an impact in the CBKA approximation, but type-I errors do
not (at least using the marginals of the distribution, instead of approximate be-
liefs). The results in the second column correspond to Pareto optimal solutions
in terms of Kendall tau rank distance. According to the correlation shown in
the previous section, a similar behaviour can be seen for almost all the cases.

For n = 6, the percentage of chordal and non-chordal graphs is 56% and
44%, respectively (see Table 1). For larger domains, the proportion of chordal
graphs is smaller. In Figure 9 the same experiment is shown for some graphs
with n = 8. In this case, since it is unfeasible to compute the CBKA for all the
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G∗ KL-divergence Kendall tau rank

Figure 8: Pareto optimal solutions over the complete landscape of CBKA for
different MNs with n = 6. Green circles are chordal Pareto optimal solutions,
and red triangles are non-chordal Pareto optimal solutions. The second column
shows the Pareto optimal solutions of the KL divergence over the storage cost.
The third column shows the Pareto optimal solutions of the Kendall tau rank
distance over the storage cost.
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G∗ KL-divergence Kendall tau rank

Figure 9: Pareto optimal solutions over a sample of the landscape of CBKA for
different MNs with n = 8. Green circles are chordal Pareto optimal solutions,
and red triangles are non-chordal Pareto optimal solutions. The second column
shows the Pareto optimal solutions of the KL divergence over the storage cost.
The third column shows the Pareto optimal solutions of the Kendall tau rank
distance over the storage cost.
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possible graphs, we uniformly sampled structures from G8. Interestingly, the
trends are similar to the case for n = 6, but here the proportion of chordal and
non-chordal graphs is 12% and 88%, respectively. In this case, more non-chordal
cases appear in the list of Pareto optimal structures.

Regarding questions (a) and (b), our results does not show a clear difference
between cases when G∗ ∈ Gc, in contrast with the cases where G∗ ∈ Gnc. For
chordal graphs, when solution is the fully structure it is allways convenient to
select chordal graphs, but it is not the same case for the empty structure. For
non-chordal graphs, in some cases it seems to be convenient to select non-chordal
structures, but we need a major insight about what are these specific cases. It
seems that the impact of the CBKA is more related to the complexity of G∗

(storage cost), and the number of type-II errors that the candidate structures
can have.

Regarding question (c), it is possible that the number of cycles affect the
quality of the CBKA. The results for the fully structure (that has a lot of cycles)
show that the CBKA could be a worse approximation, since there is a clear
trend to decrease the KL as well as the storage cost increases. The graphs in
the third row shows that as well as the type-II errors increases the KL increases,
which seem to be related with the cycles that are broken when type-II errors
are introduced. Then the CBKA tends to be worse. For the empty structure,
since there are no cycles the KL is always zero. For the non-chordal structures
of Figures 9, it can be seen also that the cycles affect the CBKA. For the graph
in the second row, we have also a worse approximation than that for the graph
of the third row, because the KLs are greater.

Until now, the results do not cover all the specific cases, and a more sys-
tematic experiment is required to better answer our questions. But there are
some clear trends. Additionally, in our experiments, the minimal triangulation
graph is already computed and stored for non-chordal graphs in the Pareto set.
They are not shown here, but it is of our interest in the future to compare
the quality of the non-chordal CBKA with its corresponding minimal trian-
gulated chordal graph, in order to check if there are improvements in quality
and/or storage cost. The algorithm used for triangulation is extracted from
[Berry et al., 2010], where the authors claim that although a minimum trian-
gulation is NP complete, computing a minimal triangulation can be done in
O(nm) time (n is the number of vertices and m is the number of edges).

6 Related work

Below is a list of papers related to this research. They are sorted chronologically,
with a brief description of the major contributions, and how each of them is
related to the research questions of this work9.

8In this experiment, we simply generated 10 structures for each possible cardinality, or
number of edges

9Until now, I simple scanned these papers. I need more time to understand each of these
papers more deeply, and to classify them correctly according to our current work
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A work of interest is [Pelizzola, 2005], a review on the problem of the min-
imization of the variational free energy, which arises in the cluster variation
method. This work describes the cases where the CVM is known to be exact.
The first case is due to the topology of the underlying graph, i.e., when the
solution graph is tree-like. Also, they describe the issue of realizability (the pos-
sibility of reconstructing a global probability distribution from the marginals
predicted by the clustering variation methods) and consider cases where the
form of the Hamiltonian makes an exact solution feasible with the CVM.

In [Pakzad and Anantharam, 2005], the problem treated is that of finding
the marginals of a product distribution10. Our problem is different, given the
marginals of a joint distribution, we want to know how accurate is a given
product distribution, the one determined by the Kikuchi approximation from
the original marginal distributions given (the original regions that correspond
to maximal cliques of the graph). The questions addressed are two: 1) Finding
one or more marginals. 2) Finding the partition function for the distribution. In
this work we consider a related but different problem, given a distribution, not
necessarily decomposable, what combination of its marginals produces a good
approximation of the function given some predefined criterion. Loopy belief
propagations and other message passing algorithms are used to find marginal
distributions or the most probable configuration of a state. In the general case,
it is not possible to estimate the quality of the approximation they produce.
The rationale of applying message-passing algorithms, as done by Yedidia, is to
obtain better approximations to the marginals and the partition function. The
connection between the Statistical Physics and Kikuchi approximation given
by the Pakzad adn Anantharam is based on a particular choice of the energy
Er(xr) = −log(αr(xr)) that leads to F (b) = KL(b||B) − log(Z). One open
questions is whether is possible to find another choice of the energy leading to a
particular expression for the Kendal metric or other measures of quality of the
distribution. In terms of the authors notation, the collection of values associated
to the regions {br(xr), r ∈ R} are probability distributions. When they are
marginals of another probability distribution they are called R-marginals. We
work with R-marginals.

Another work of interest is [Heskes, 2006], an approach proposed to explic-
itly minimize the Kikuchi and Bethe free energy. This work tackles a specific
problem of loopy and generalized belief propagation. Since these inference algo-
rithms do not always converge to a stable fixed point, finding such a minimum
then becomes a possibly non-convex constrained minimization problem. Thus,
this work proposes an approach to solve this non-convex problem through se-
quential constrained minimization of convex bounds on the Kikuchi free energy.
For this, the sufficient conditions for the Kikuchi free energy to be convex are
discussed.

Another work of interest for this research question is [Komodakis et al., 2011].
This work introduces a framework for discrete MRF-based optimization in the
computer vision problem. For MRFs, there are two classes of methods: those

10Roberto, he copiado y pegado las notas que tomaste sobre este paper y las he puesto aqúı.
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based on graph-cuts, and those based on message-passing. The latter class had
a significant advance with the introduction of the tree-reweighted message pass-
ing algorithms [Kolmogorov, 2006, Wainwright et al., 2005]. The framework is
based in the use of dual decomposition, one of the most powerful and widely used
techniques in optimization. A projected subgradient scheme is used for comput-
ing a solution to a difficult or large optimization problem by first decomposing it
into a set of easier subproblems and then combining the subproblems solutions.
This leads to a message passing algorithm that generalizes tree-reweighted mes-
sage passing methods and has stronger theoretical properties.

In [Welling et al., 2012] the authors stablished some connections between
Generalized Belief Propagation algorithms [Yedidia et al., 2005] and EP algo-
rithms for approximate Bayesian inference [Minka, 2001b]. The problem that
they are interested to solve is how to choose an appropriate approximation
structure. In this work, a framework called ’Structured Region Graph’ is pro-
posed for producing high-quality approximations with a user-adjustable level
of complexity. The formalism proposed allows to choose good approximation
structures to do inference with generalized belief propagation.

In [Korč et al., 2012], the problem of inference in a graphical model with
binary variables is considered. The authors propose a method for comput-
ing marginal probabilities and also to use MAP inference, called the Discrete
Marginals technique. In their method, approximate marginals are obtained by
minimizing an objective function with unary and pairwise terms over a dis-
cretized domain. They propose two ways to set up the objective function: by
discretizing the Bethe free energy and by learning it from training data. In their
results, for certain types of graphs a learned function can outperform the Bethe
approximation.

[Loh and Wibisono, 2014] is one more recent work, also focused in the con-
cavity of reweighted Kikuchi approximation. This work proposes an objective
function which is a reweighted version of the CBKA for estimating the log parti-
tion function of a distribution defined over a region graph. Sufficient conditions
for the concavity of the function are stablished. When the region graph has only
two layers (i.e., Bethe approximation), the sufficient conditions for concavity are
also necessary. Also an explicit characterization of the polytope of concavity is
provided, in terms of the cycle structure of the region graph. The authors claim
that future research must include a better understanding of the approximation
guarantees.

A recent related work is [Weller, 2015]. This work also considers the problem
of inference in undirected graphical models, for the binary pairwise case. In this
work the authors demonstrate that several recent results on the Bethe approx-
imation may be generalized to a broad family of related pairwise free energy
approximations with arbitrary counting numbers. The approximation error is
analized, in order to explain the empirical success of the Bethe approximation.

Another recent work of interest for this research is [Lin et al., 2016]. In this
paper the problem is how to do efficient inference in Bayesian networks with
large numbers of densely connected variables. The paper presents an algorithm
called Triplet Region Construction (TRC) for approximate inference which is
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composed by three sub algorithms: (i) Outer Region Identification (ORI): it
allows to identify outer (redundant) regions in a first step to construct a valid
region graph. The algorithm identifies largest regions by considering conditional
independences derived from local correlations. The algorithm search for regions
that satisfy 2 constraints. The first is the perfect correlation property which
says that the sum of all regions overcounting numbers is 1. The second is the
max-ent normal property, which says that the constrained region-based entropy
achieves its maximum when all the beliefs are uniform. (ii) Region Graph Binary
Factorization (RGBF): This algorithms decomposes the region graph into an
equivalent and numerically stable alternative. This is because for high tree-
width factorized models the region-based algorithms suffer from numerically
instability problems when performing inference. (iii) Concave Convex procedure
(CCP): This is a known alternative to Generalized Belief Propagation (GBP)
to minimeze the Kikuchi free energy. In contrast with GBP, CCP guarantees
convergence but it is numerically unstable for large models. The authors claim
that the resulting TRC algorithm is guaranteed to converge and that it reduces
the clustering complexity for factorized models from worst case exponential to
polynomial.

7 Open questions and future work

Next, a list of tasks to be done in order to extend the experiments and analysis
of the previous experiments.

• In a new version of the manuscript, Section 2.2 has to be more related
with the proposal we advance.

• Regarding the costs histograms of Figure 2, we need to complete the anal-
ysis. It would be useful to find the function that fit these curves, in order
to generate it automatically for higher domains, and perhaps for using it
in learning algorithms. I can optimize the code to generate the histograms
for larger domains. I think we can show two graphs: one graph for the
distribution over chordal graphs and other over non-chordal graphs. At
each one, we can summarize the results with one curve for different n val-
ues (e.g., n = {4, 6, 8, 10, 12}). We should investigate if there are known

ways to compute how many graphs among the 2(n
2) contain a particular

clique, and from there derive the cost of all possible subgraphs.

• Regarding the Pearson’s correlation scatter plots of Figure 4, it is required
to optimize the implementation to generate the plots for larger domain
sizes.

• The experiments of Section 5 have several issues. We need a more sys-
tematic methodology, since we cannot justify our arbitrary choices of the
structure corresponding to the underlying distribution. Besides, we need
an alternative methodology to extend the conclusions for larger domain
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sizes. We can select also some benchmark networks of interest for the
community as arbitrary structures.

• In the experiments of Section 5, the minimal triangulation graph is al-
ready computed and stored for the non-chordal graphs in the Pareto set.
They are not shown here, but it is of our interest in the future to compare
the quality of the non-chordal CBKA with its corresponding minimal tra-
iangulated chordal graph, in order to check if there are improvements in
quality and/or storage cost.

Finally, the following open questions arise from this work11:

• What are the properties of CBKAs learned from marginal distributions?
Our results can answer partially this question. The fact that the Kendall
tau rank distance is correlated to KL divergence is a specific property
of the CBKA method? Our results in Section 5 showing several non-
chordal structures in the Pareto optimal set demonstrate that the class of
CBKA includes a much larger set of approximations than those derived
from junction trees (or equivalently, chordal graphs)... what property of
CBKA allows us to do this affirmation?

• Under which conditions a CBKA is a probability distribution? We used
normalized KL in our experiments, but it is not tractable for larger do-
mains. How can we tackle this problem?

• Regarding the correlation between KL divergence and Kendall tau rank
distance, it is possible to take advantage of this for designing novel meth-
ods based on the Kendall tau rank distance. In the literature, the KL is
probably as ubiquitous in algorithms for minimizing the energy. Can we
design methods based on choices of the energy designed from the definition
of the Kendall distance ?

• Regarding the landscape of CBKA proposed in Section 4, how can we use
it for designing algorithms for learning CBKA? What criteria could we
use to determine which structures are good?

• What problems should we focus? (options are: classification tasks, MAP
inference tasks, marginal computations tasks, partition function compu-
tation, etc.)
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