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Abstract. Markov networks are models for compactly representing com-
plex probability distributions. They are composed by a structure and a
set of numerical weights. The structure qualitatively describes indepen-
dences in the distribution, which can be exploited to factorize the dis-
tribution into a set of compact functions. A key application for learning
structures from data is to automatically discover knowledge. In practice,
structure learning algorithms focused on “knowledge discovery” present
a limitation: they use a coarse-grained representation of the structure.
As a result, this representation cannot describe context-specific indepen-
dences. Very recently, an algorithm called CSPC was designed to over-
come this limitation, but it has a high computational complexity. This
work tries to mitigate this downside presenting CSGS, an algorithm that
uses the Grow-Shrink strategy for reducing unnecessary computations.
On an empirical evaluation, the structures learned by CSGS achieve com-
petitive accuracies and lower computational complexity with respect to
those obtained by CSPC.

Keywords: Markov networks, structure learning, context-specific inde-
pendences, knowledge discovery, canonical models.

1 Introduction

Markov networks are parametric models for compactly representing complex
probability distributions of a wide variety of domains. These models are com-
posed by two elements: a structure and a set of numerical weights. The struc-
ture plays an important role, because it describes a set of independences that
holds in the domain, making assumptions about the functional form or factor-
ization of the distribution [5]. For this reason, the structure is an important
source of knowledge discovery because it depicts intricate patterns of probabilis-
tic (in)dependences between the domain variables. Usually, the structure of a
Markov network can be constructed by algorithms from observations taken from
an unknown distribution. These algorithms automatically induce the structure,
from which human experts can discover knowledge [15]. For this reason, in the
last years, the problem of structure learning from data has received an increasing
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attention in machine learning [13, 9, 8]. However, the Markov network structure
learning from data is still challenging. One of the most important problems is
that it requires weight learning that cannot be solved in closed-form, requiring
to perform a convex optimization with inference as a subroutine. Unfortunately,
inference in Markov networks is #P-complete [8].

In general, the problem of Markov network structure learning can be formu-
lated as an optimization problem as follows: first, it is defined a solution space
consisting of a set of possible structures, and then an objective function that
scores each structure in order to evaluate its “quality” over data. Thus, a struc-
ture learning algorithm can be viewed as a search strategy that attempts to iden-
tify a high-quality structure in the solution space. However, the main obstacle in
structure learning is that the number of possible structures is exponential in the
number of variables and their values. As a result, structure learning algorithms
seek the “best” approximation to the solution structure, making assumptions
about the form of the solution space or the objective function. The use of these
approximations depends on our particular task or our goal of learning (Chap-
ter 16 [8]), that is, the reasons for learning a structure in some task. In generative
learning, we can find two goals of learning: density estimation, where a structure
is “best” when the resulting Markov network is accurate for answering inference
queries; and knowledge discovery, where a structure is “best” when it is accurate
for qualitatively describing the independences that hold in the distribution. De-
pending on the goal of learning, we can categorize structure learning algorithms
in: density estimation algorithms [4, 11]; and knowledge discovery algorithms [1,
14].

In practice, knowledge discovery algorithms exploit the fact that the struc-
ture implies a set of independences in the distribution. Thus, for constructing
a structure, they successively make (in)dependence queries to data in order to
restrict the number of possible structures in the solution space, converging to-
ward the solution structure. To achieve a good performance in this procedure,
knowledge discovery algorithms use a sound and complete representation of the
structure: a single undirected graph. A graph can be viewed as an inference
engine which efficiently represents and manipulates dependences and indepen-
dences in polynomial time [13]. Unfortunately, this graph representation cannot
capture a type of independences known as context-specific independences [6–
8]. For these cases, knowledge discovery algorithms cannot achieve good results
in their goal of learning, because a single graph cannot capture such indepen-
dences, obscuring the acquisition of knowledge. To overcome this limitation, a
novel knowledge discovery algorithm has recently been developed [3]. This al-
gorithm, called CSPC, uses an alternative representation of the structure called
canonical models, a particular class of Context Specific Interaction models (CSI
models) [7]. Canonical models allow us to encode context-specific independences
by using a set of mutually independent graphs. Using these models, CSPC can
learn more accurate structures than several knowledge discovery and density es-
timation algorithms. However, despite the benefits in accuracy, CSPC presents
an important downside: it has a high computational complexity. This is due to,
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for learning a canonical model, CSPC must search a collection of graphs, in-
stead of a single graph as traditional knowledge discovery algorithms. In simple
terms, CSPC performs a large number of independence queries in comparison to
traditional algorithms.

This paper focuses on reducing the number of independence queries required
for learning canonical models. This reduction was thought in order to achieve
competitive accuracies with respect to CSPC, but avoiding unnecessary queries.
To achieve this, we present a novel knowledge discovery algorithm that uses an
alternative search strategy for learning canonical models. This search is based
on the Grow-Shrink strategy [12], which is used by a Markov network structure
learner called GSMN [1]. This strategy constructs the structure by identifying
the local neighborhood of each variable in polynomial time under the assumption
of bounded neighborhood size. On an empirical evaluation, the canonical mod-
els learned by CSGS achieve competitive accuracies and lower computational
complexity with respect to those obtained by CSPC.

The remaining of this work is structured as follows: Section 2 reviews essential
concepts. Section 3 presents our contribution: CSGS. Next, Section 4 shows our
empirical evaluation of CSGS on synthetic datasets. Finally, Section 5 concludes
with directions for future work.

2 Background

We introduce our general notation. Hereon, we use the symbol V to denote a
finite set of indexes. Lowercase subscripts denote particular indexes, for instance
a, b ∈ V ; in contrast, uppercase subscripts denote subsets of indexes, for instance
W ⊆ V . Let XV be a set of random variables of a domain, where single variables
are denoted by single indexes in V , for instance Xa, Xb ∈ XV where a, b ∈ V .
We simply use X instead of XV when V is clear from the context. We focus on
the case where X takes discrete values x ∈ Val(V ), that is, the values for any
Xa ∈ X are discrete: Val(a) = {x0

a, x
1
a, . . .}. For instance, for boolean-valued

variables, that is |Val(a)| = 2, the symbols x0
a and x1

a denote the assignments
Xa = 0 and Xa = 1, respectively. Moreover, we overload the symbol V to also
denote the set of nodes of a graph. Finally, we use X ⊆ Val(V ) for denoting an
arbitrary set of complete or canonical assignments, that is, all the variables take
a fixed value. For instance, xiV ≡ xi ∈ Val(V ).

2.1 Conditional and context-specific independences

A set of independence assumptions is commonly called the structure of a distri-
bution because independences determine the factorization, or functional form,
of a distribution. Two of the most known types of independences are conditional
and context-specific independences. The latter has received an increased inter-
est [6–8, 2, 3], because one conditional independence can be expressed as a set
of context-specific independences. Formally, context-specific independences are
defined as follows:
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Definition 1. Let A,B,U,W ⊆ V be disjoint subsets of indexes, and let xW be
some assignment in Val(W ). Let p(X) be a probability distribution. We say that
variables XA and XB are contextually independent given XU and the context
XW = xW , denoted by I(XA, XB | XU , xW ), iff p(X) satisfies:

p(xA|xB , xU , xW ) = p(xA|xU , xW ),

for all assignments xA, xB, and xU ; whenever p(xB , xU , xW ) > 0.

As a consequence, if I(XA, XB | XU , xW ) holds in p(X), then it logically is
followed that I(xA, xB | xU , xW ) also holds in p(X) for any assignment xA, xB ,
xU . Interestingly, if I(XA, XB | XU , xW ) holds for all xW ∈ Val(W ), then we
say that the variables are conditionally independent. Formally,

Definition 2. Let A,B,U,W ⊆ V be disjoint subsets of indexes, and let p(X)
be a probability distribution. We say that variables XA and XB are condition-
ally independent given XU and XW , denoted by I(Xa, Xb | XU , XW ), iff p(X)
satisfies:

p(xA|xB , xU , xW ) = p(xA|xU , xW ),

for all assignments xA, xB, xU , and xW ; whenever p(xB , xU , xW ) > 0.

Thus, a conditional independence I(XA, XB | XU , XW ) that holds in p(X)
can be seen as a conjunction of context-specific independences of the form
I(XA, XB | XU , xW ) that holds in p(X), for all xW ∈ Val(W ). Moreover, a
context-specific independence I(XA, XB | XU , xW ) that holds in p(X) can be
seen as a conditional independence I(XA, XB | XU ) that holds in the conditional
distribution p(XV \W |xW )[2].

2.2 Representation of structures

The independence relation I(·, · | ·) commonly assumes the properties shown in
Section 3.1 in [9], and also that these independences hold in probability distribu-
tions that are positive1. Thus, an isomorphic mathematical object that conforms
to the previous properties is an undirected graph [13]. An undirected graph G
is a pair (V,E), where E ⊂ V × V is a set of edges which encodes conditional
independences by using the graph-theoretic notion of reachability. As a result,
the independence assertion I(XA, XB | XU ) can be associated with the graphical
condition: “every path from A to B is intercepted by the nodes U”. Therefore,
a graph G encodes knowledge in a readily accessible way, that is, the graph is
highly interpretable. For instance, we can determine the adjacencies of a node
a, or its Markov blanket MB(a : G) ⊆ V \ {a}2, from its neighboring nodes in
the graph G. Unfortunately, the use of a single graph as representation presents

1 A distribution p(X) is positive if p(x) > 0, for all x ∈ Val(V ).
2 We simply use MB(a) when the structure from which the Markov blanket is defined

is clear from the context.
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an issue when distributions hold context-specific independences, because it only
encodes conditional independences, leading to excessively dense graphs [2, 3].

In practice, for overcoming the previous limitation, an alternative represen-
tation of the structure consists in a set F = {f iD} of features, where each feature
is commonly represented as an indicator function (Kronecker’s delta), that is,
a boolean-valued function fD : Val(D) 7→ {0, 1}. Given an arbitrary assign-
ment x, a feature f iD(x) returns 1, if xD = xiD; and 0 otherwise. A set of fea-
tures is a more flexible representation than a graph, because the former can en-
code context-specific independences. For example, an independence of the form
I(Xa, Xb | xW ) is encoded in F iff for any feature f iD ∈ F ′ = {f iD ∈ F : xW =
xiW ∧ W ⊆ D}, the variables Xa and Xb do not appear simultaneously in the
set D, that is, either a /∈ D or b /∈ D. From a set F of features, we can induce a
graph G by adding an edge between every pair of nodes whose variables appear
together in some feature f iD ∈ F [3]. In a similar way, following our previous
example, we can induce a graph from F ′ ⊆ F . This graph is known as an in-
stantiated graph G(xiW ) = (V,E, xiW ), namely, a graph G = (V,E) whose nodes
W ⊆ V are associated to the assignment xiW ∈ Val(W ) [6]. Unfortunately, a
set of features is not easily interpretable as a single graph, because we cannot
efficiently verify independence assertions, since we are required to check all the
features in F .

A graph representation for overcoming the previous limitations is canonical
models [3]. These models are a proper subset of the CSI models [6, 7], which
can capture context-specific independences in a more interpretable way than a
set of features. A canonical model Ḡ is a pair (G,X ), where G is a collection of
instantiated graphs of the form G = {G(xi) ∈ G : xi ∈ X ⊆ Val(V )}, and X
is a set of canonical assignments. These instantiated graphs are called canoni-
cal graphs, because every graph G(xi) is associated to a canonical assignment
xi ∈ Val(V ). In contrast to a single graph G, a canonical model requires several
canonical graphs for capturing both conditional and context-specific indepen-
dences. For instance, let us suppose that we want to encode the context-specific
independence I(Xa, Xb | xw) in a canonical model Ḡ. By Definition 2.1, this
independence implies a set of independences of the form I(xa, xb | xw), for all
the assignments xa, xb ∈ Val(a),Val(b). Then, each independence I(xa, xb | xw)
is captured by a particular G(xi) ∈ G, one whose context xi satisfies: xia = xa,
xib = xb, and xiw = xw.

2.3 Markov networks

A Markov network is a parametric model for representing probability distri-
butions in a compact way. This model is defined by a structure and a set of
potential functions {φk(XDk

)}k, where φk : Val(Dk) 7→ R+, and XDk
⊆ X is

known as the scope of φk. For discrete domains, a usual representation of the
potential functions is a table-based function. Markov networks can represent a
very important class of probability distributions called Gibbs distributions, whose
functional form is as follows:
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p(X = x) =
1

Z

∏
k

φk(xDk
),

where Z is a global constant, called partition function, that guarantees the
normalization of the product.

A Gibbs distribution p(X) factorizes over a graph G, if any scope XDk
cor-

responds to a complete subgraph Dk (a.k.a. clique) of the graph G. Without
loss of generality, the Gibbs distribution is often factorized by using the maxi-
mum cliques of the graph G. For positive distributions, one important theoretical
result states the converse [5], that is, p(X) can be represented as a Gibbs distri-
bution (Markov network) that factorizes over G, if G is an I-map3 for p(X). As
a result, given a positive Gibbs distribution p(X), it can be shown that every
influence on any variable Xa ∈ X can be blocked by conditioning on its Markov
blanket MB(a : G), formally: p(Xa|XV \{a}) = p(Xa|XMB(a))

4. Interestingly, an
extension of the previous property provides a criterion for determining the pres-
ence or absence of any edge (a, b) in an I-map graph G as follows [14, Theorem 1]:

Proposition 1. Let p(X) be a positive Gibbs distribution. Then, for any a ∈ V :

1. the set of assertions {I(Xa, Xb | XMB(a)\{b}) : b ∈ MB(a)} is false in p(X),
presence of an edge (a, b), iff each assertion satisfies p(Xa, Xb|XMB(a)) 6=
p(Xa|XMB(a)) · p(Xb|XMB(a)).

2. the set of assertions {I(Xa, Xb | XMB(a)) : b /∈ MB(a)} is true in p(X),
absence of an edge (a, b), iff each assertion satisfies p(Xa, Xb|XMB(a)) =
p(Xa|XMB(a)) · p(Xb|XMB(a)).

Although a Gibbs distribution makes the structure explicit, it encodes the
potential functions as a table-based function, obscuring finer-grained structures
such as context-specific independences [8]. For this reason, a commonly used
representation of a Markov network is the log-linear model :

p(x) =
1

Z
exp

{ ∑
k

∑
i

wi,kf
i
k(xDk

)

}
.

A log-linear model can be constructed from a Gibbs distribution as follows:
for the ith row of the table-based potential function φk, an indicator function
f ik(·) is defined whose weight is wi,k = log φk(xiDk

).

3 A structure is an I-map for p(X) if every independence described by the structure
holds in p(X).

4 We further refer the readers to Section 3.2.1 in [9] and Section 4.3.2 in [8] for more
details.
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3 Context-Specific Grow-Shrink algorithm

In this section we present CSGS (Context-Specific Grow-Shrink), a knowledge
discovery algorithm for learning the structure of Markov networks by using
canonical models as structure representation. The design of CSGS was inspired
by the search strategy used by CSPC for learning canonical models [3], and the
GS search strategy for learning graphs [12, 1]. Therefore, CSGS obtains a canon-
ical model by learning a collection G of mutually independent canonical graphs,
where each canonical graph G(xi) ∈ G is learned by using the GS strategy. More
precisely, GS obtains a graph in two steps: first, it generalizes an initial very spe-
cific graph (one that makes many independence assumptions) by adding edges.
Then, the resulting graph is specialized by removing spurious edges. In sum, Al-
gorithm 1 shows an overview of CSGS. In line 1 and 2, CSGS defines an initial
specific canonical model from a set of canonical assignments X . Subsequently,
line 3 and 4 constructs each canonical graph G(xi) ∈ G by using the GS strategy.
For determining the presence or absence of an edge, CSGS uses Proposition 1 as
criterion. The validation of this criterion is realized by eliciting context-specific
independences from data in a similar way to CSPC [3, Section 4.3]. Finally, in
a similar fashion to CSPC [3, Section 4.4], CSGS uses the resulting canonical
model Ḡ for generating a set F of features in order to enable us to use standard
software packages for performing weight learning and inference.

The remaining of this section is structured by using the key elements of
CSGS: i) Section 3.1 describes how the initial canonical model is defined; and
ii) Section 3.2 concludes presenting the GS strategy for obtaining the canonical
graphs.

Algorithm 1: Overview of CSGS
Input: domain V , dataset D

1 X ← Define the set of canonical assignments

2 G ← Define a set of initial graphs {G(xi): xi ∈ X}
3 foreach G(xi) ∈ G do
4 G(xi)← GS(G(xi), D)

5 F ← Feature generation from Ḡ = (G,X )

3.1 Initial canonical model

The definition of the initial canonical model consists, firstly, in the set of canon-
ical assignments X . In a similar fashion to CSPC [3], this set is composed by the
unique training examples in D. This definition is the consequence of using the
data-driven approach, that is, we use only contexts that appear in data, and for
the remaining contexts which do not appear in the data, we assume that they
are improbable due to the lack of other information. Lastly, once X is defined,
we associate the most specific graph G(xi) to each context xi ∈ X , namely, the
empty graph. As a result, in each initial canonical graph, every Markov blanket
is empty. The idea behind the GS strategy is to add edges, thus adding nodes
to each blanket.
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3.2 Grow-Shrink strategy for learning canonical graphs

CSGS uses the GS strategy under the local-to-global approach [14, 11]. In this ap-
proach, the structure is obtained by constructing each Markov blanket MB(a), a ∈
V in turn. In this manner, for each node a, the strategy GS determines the
Markov blanket MB(a) in two phases: the grow phase and the shrink phase. The
grow phase adds a new edge (a, b) to E as long as Proposition 1.1 is satisfied
in data. However, due to the node ordering used [12, 1], the grow phase can
add nodes that are outside of the blanket, resulting in spurious edges. For this
reason, the shrink phase removes an edge (a, b) ∈ E as long as Proposition 1.2
is satisfied in data. Algorithm 2 shows a more detailed description of the con-
struction of the canonical graph G(xi). Initially, the canonical graph G(xi) is
empty, then it is generalized by using the local-to-global approach shown in the
loop of line 1. In this loop, the two steps of GS are performed: the grow phase,
starting in line 2; and the shrink phase, starting in line 5. In each iteration of
the main loop, line 4 and 7 change the Markov blanket by adding/removing new
edges to the current set E of edges. Once the main loop has finished, the Markov
blankets of each node are obtained and, in consequence, the resulting canonical
graph encodes context-specific independences.

Algorithm 2: GS strategy

Input: graph G(xi) = (V,E, xi), dataset D
1 foreach node a ∈ V do
2 foreach node b ∈ V \ (MB(a : G(xi)) ∪ {a}) do
3 if I(Xa, Xb | xi

MB(a : G(xi))
) is false in D then

4 E ← E ∪ (a, b)

5 foreach b ∈ MB(a) do
6 if I(Xa, Xb | xi

MB(a : G(xi))\{b}) is true in D then

7 E ← E \ (a, b)

8 return G(xi)

4 Empirical evaluation

This section shows experimental results obtained from the structures learned
by CSGS and several structure learning algorithms on synthetic datasets. Ba-
sically, the goals of our experiments remark the greatly practical utility of our
algorithm in two-fold. First, we compare the accuracy of the structures learned
by CSGS and CSPC, as well as by other state-of-the-art structure learners. Sec-
ond, we compare the computational complexity between CSGS and CSPC. For
evaluating the accuracy of the learned structures, we use the underlying distri-
butions that were sampled to generate the synthetic datasets; since there is a
direct correlation between the correctness of the structure and the accuracy of
the distribution[5], the accuracy of a structure can be measured by comparing
the similarity between the learned and underlying distributions. On the other
hand, for evaluating the computational complexity, we report the number of
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tests performed for constructing the structures5. Lastly, an open source imple-
mentation of CSGS algorithm as also the synthetic datasets used in this section
are publicly available. 6.

4.1 Datasets

The datasets of our experiment are used in [2, 3] and were sampled from Markov
networks with context-specific independences for different n numbers of variables
that range from 6 to 9, varying their sizes from 20 to 100k datapoints. For
each n, 10 datasets were sampled from 10 different Markov networks with fixed
structure but randomly choosing their weights. For more details, we refer the
readers to [3, Appendix B]. Roughly speaking, the underlying structure of these
models encodes independence assertions of the form I(Xa, Xb | x1

w) for all pairs
a, b ∈ V \ {w}, becoming dependent when Xw = x0

w. In this way, the underlying
structure can be seen as two instantiated graphs: a fully connected graph G(x0

w),
and a star graph G(x1

w) whose central node is x1
w. Despite the simplicity of this

structure, this cannot be correctly captured by using a single graph, yet it can
be captured by sets of features or canonical models. On the other hand, as the
maximum degree of the underlying structure is equal to n, the structure learning
is a challenging problem [2, 14]. The generated datasets are partitioned into: a
training set (70%) and a validation set (30%). The reason of this partition is
due to the fact that density estimation algorithms use the validation set to tune
their tuning parameters, that is, they learn several models from the training set
by using different tuning parameters, and then they select the “best” of these
models by using the maximum pseudo-likelihood on the validation set. On the
other hand, CSGS, CSPC and knowledge discovery algorithms do not use tuning
parameters, they therefore use the whole dataset, i.e. the union of both sets, for
learning the models.

4.2 Methodology

In this subsection we explain the methodology used for evaluating our approach
against several structure learning algorithms. First, we explain which structure
learning algorithms are used as competitors and their configuration settings, and
then we describe the method used for measuring the accuracies of the learned
structures: Kullback-Leibler divergence (KL) [8, Appendix A].

CSGS is compared against CSPC and two representative algorithms for
knowledge discovery and density estimation goals. The knowledge discovery al-
gorithms are: GSMN [1], and IBMAP-HC [14]. For a fair comparison, we use the
Pearson’s χ2 as the statistical independent test with a significance level of 0.05
for CSGS, CSPC and GSMN, but not for IBMAP-HC which only works with

5 Additional empirical results are available in the online appendix
http://dharma.frm.utn.edu.ar/papers/iberamia14/supplementary-information-
on-csgs.pdf

6 https://bitbucket.org/ystrappa/csgs
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the Bayesian statistical test with a threshold equals 0.5. On the other hand, the
density estimation algorithms are: GSSL [4], and DTSL [11]. For a fair com-
parison, we replicate the recommended tuning parameters for both algorithms
detailed in [4], and [10], respectively.

KL divergence evaluates how similar the learned Markov networks are against
the underlying distributions. Thus, the Markov networks are obtained from the
learned structures by learning their weights with pseudo-likelihood7. The KL
divergence is a “distance measure” widely used to compare two distributions,
p(X) and q(X), by measuring the information lost between them, as follows:

KL(p || q) =
∑

x∈Val(V ) p(x) log p(x)
q(x) , where KL(p || q) = 0 iff p(X) = q(X),

and positive otherwise. This measure is not symmetric, but it satisfies the basic
property of an error measure. Therefore, let p(X) be the underlying distribu-
tion, and let q1(X) and q2(X) be two Markov networks learned from samples
of p(X); then the Markov network with the smallest KL divergence is the most
accurate. As shown in [2], the KL divergence depends on the structure used: the
smallest KL divergence should be obtained by Markov networks whose structure
is accurate.

4.3 Results of experimentation

Figure 1 presents the KL divergences computed from the structures learned
by the different algorithms. For comparison reasons, the KL divergences of the
underlying structures are drawn. In these results, we can see three important
trends. First, the structures learned by CSGS reach similar divergences in most
cases to CSPC. Second, in most cases, the divergences obtained by CSGS and
CSPC are better than those obtained by the other structure learners. Finally, the
divergences of CSGS and CSPC are closer to the divergences obtained by the un-
derlying structure. These trends allow us to conclude that the structures learned
by CSGS and CSPC can encode the context-specific independences present in
data, resulting in Markov networks more accurate than those obtained by the
remaining algorithms.

Figure 2 presents the number of tests performed by CSGS and CSPC for
learning the structures used previously for computing the KL divergences. As
shown, the number of tests performed by CSGS is smaller than those performed
by CSPC. The difference between both dramatically increases when data in-
creases. These results show the great impact of using the GS strategy for learn-
ing canonical models. In conclusion, the results shown in both figures show that
CSGS is an efficient alternative to CSPC for learning canonical models.

5 Conclusions and future work

In this work we presented CSGS, a new knowledge discovery algorithm for learn-
ing Markov network structures by using canonical models. CSGS is similar to

7 Weight learning was performed by using the version 0.5.0 of the Libra toolkit
(http://libra.cs.uoregon.edu/)



The Grow-Shrink strategy for learning Markov network structures 11

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000

K
L

 d
iv

er
g
en

ce

Amount of data

n=6

IBMAPHC
GSSL
DTSL

GSMN
CSPC
CSGS

Underlying

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000

K
L

 d
iv

er
g
en

ce

Amount of data

n=7

IBMAPHC
GSSL
DTSL

GSMN
CSPC
CSGS

Underlying

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000

K
L

 d
iv

er
g
en

ce

Amount of data

n=8

IBMAPHC
GSSL
DTSL

GSMN
CSPC
CSGS

Underlying
 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000

K
L

 d
iv

er
g
en

ce

Amount of data

n=9

IBMAPHC
GSSL
DTSL

GSMN
CSPC
CSGS

Underlying

Fig. 1. KL divergences over increasing amounts of data for structures learned by:
CSGS, CSPC, IBMAP-HC, GSMN, GSSL, and DTSL. For comparison reasons, the
KL divergence of the underlying structure is shown. Every point represents the average
and standard deviation over ten datasets with a fixed size.

the CSPC algorithm [3], except that CSGS uses an alternative search strat-
egy called GS [12, 1], that avoids performing unnecessary independence tests.
We evaluated our algorithm against CSPC and several state-of-the-art learn-
ing algorithms on synthetic datasets. In our results, CSGS learned structures
with similar accuracy to CSPC but performing a reduced number of tests. The
directions of future work are focused on further reducing the computational com-
plexity and improving the quality of the learned structures. We will investigate
alternative adaptations which use different search strategies: IBMAP-HC on the
side of knowledge discovery algorithms [14], and GSSL on the side of density
estimation algorithms [4].
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