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Abstract In this work we consider the problem of learning the structure of
Markov networks from data. We present an approach for tackling this prob-
lem called IBMAP, together with an efficient instantiation of the approach: the
IBMAP-HC algorithm, designed for avoiding important limitations of existing
independence-based algorithms. These algorithms proceed by performing sta-
tistical independence tests on data, trusting completely the outcome of each
test. In practice tests may be incorrect, resulting in potential cascading errors
and the consequent reduction in the quality of the structures learned. IBMAP
contemplates this uncertainty in the outcome of the tests through a proba-
bilistic maximum-a-posteriori approach. The approach is instantiated in the
IBMAP-HC algorithm, a structure selection strategy that performs a polyno-
mial heuristic local search in the space of possible structures. We present an
extensive empirical evaluation on synthetic and real data, showing that our al-
gorithm outperforms significantly the current independence-based algorithms,
in terms of data efficiency and quality of learned structures, with equivalent
computational complexities. We also show the performance of IBMAP-HC in
a real-world application of knowledge discovery: EDAs, which are evolution-
ary algorithms that use structure learning on each generation for modeling the
distribution of populations. The experiments show that when IBMAP-HC is
used to learn the structure, EDAs improve the convergence to the optimum.
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1 Introduction

We present in this work the IBMAP (Independence-Based Maximum a Pos-
teriori) approach for robust learning of Markov network structures from data,
together with IBMAP-HC, an efficient hill-climbing instantiation of the ap-
proach. Markov networks and Bayesian networks belong to the family of prob-
abilistic graphical models [19], a computational framework for compactly rep-
resenting joint probability distributions. There is a large list of applications of
graphical models in a wide range of fields, such as in the areas of computer vi-
sion and image analysis [27,23], computational biology [15], biomedicine [38,
41], evolutionary computation [20,3,36], among many others. Probabilistic
graphical models are composed by an undirected (Markov networks) or di-
rected (Bayesian networks) graph G, and a set of numerical parameters Θ.
Each node in the graph G represents a random variable of the domain, and
the edges encode conditional independences among them. For this reason, the
graph G is also called the independence structure of the distribution. The im-
portance of these independences is that they factorize the joint distribution
over the domain variables into factors over subsets of variables, resulting in
important reductions in the space complexity for representing the distribution
[17]. The structure can be obtained from the knowledge of a human expert, but
commonly it is hard to obtain, and not always enough to design an accurate
structure. An interesting problem that has attracted considerable attention
is learning automatically the independence structure from categorical data
drawn from an unknown probability distribution [19,42]. However, this prob-
lem is known to be in general an NP-hard problem, since the number of struc-
tures grows super-exponentially [10]. For Markov network structure learning,
there are two broad approaches mainly considered in the literature: score-based
[14,27,22,16], and independence-based (also known as constraint-based) algo-
rithms [39,9,25,4]. On the one hand, the score-based algorithms combine a
measure of the goodness of fit of each structure to the data with a metric for
the complexity of the structure; for instance, to maximize the log-likelihood of
the maximum likelihood parameters given the structure. Recently, several effi-
cient instantiations of this approach have been developed, such as [32,13,40].
On the other hand, the independence-based algorithms proceed by performing
statistical independence tests on data, and based on the outcome of the tests
discards all structures inconsistent with the test. This approach is efficient,
and correct under some assumptions, but in practice presents quality prob-
lems: one of the assumptions is the correctness of independence tests, which
may not be true in practice when the amount of data is insufficient. It is im-
portant to mention that both score-based and independence-based approaches
have been motivated by distinct learning goals. According to the existent liter-
ature [19], score-based approaches are better suited for the density estimation
goal, that is, tasks where inferences or predictions are required [28]. In contrast,
independence-based methods are better suited for other learning goals, such as
feature selection for classification, or knowledge discovery [39,4,5]. IBMAP fol-
lows the independence-based approach for learning the structure of a Markov
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network. Our approach has been designed to be more robust when the as-
sumption of correctness of statistical tests is not valid. Instead of trusting the
outcome of statistical tests on data, IBMAP considers explicitly the posterior
probability of independences given the data. As explained in detail later on,
these posteriors of tests are combined into the posterior of the whole structure
(given the data), deciding on the output structure following the well-known
maximum-a-posteriori approach. This clearly circumvents the cascading error
of traditional independence-based algorithms, as the true structure is no longer
discarded on an incorrect test, it only results in a lower posterior probability.
With further tests, the posterior probability of the true structure may increase
again. In order to evaluate the improvements in the quality of the structures
produced by our approach, we performed detailed and systematic experiments
on both synthetic datasets and real-world datasets. In all those cases we com-
pared the structural errors of the structures learned by IBMAP-HC against
those learned by representative state-of-the-art competitors: GSMN [8,9], and
HHC-MN, a simple adaptation for Markov networks of an independence-based
structure learning algorithm for Bayesian networks, called HHC [5]. We note
that structural errors as quality measure is the most appropriate for knowledge
discovery algorithms such as those using the independence-based approach.
Additionally, we tested the performance of IBMAP-HC in a real-world appli-
cation: Estimation of Distribution algorithms (EDAs) [30]. These evolutionary
algorithms are able to solve problems that are known to be hard for traditional
Genetic Algorithms [20]. EDAs are variations of the well-known evolutionary
algorithms, that replace the crossover and mutation stages for generating a new
population of solutions with a sampling of a probability distribution learned
from the selected population. Our experiment in EDAs is motivated by the
fact that the quality of structure learning is expected to influence the results
of the optimization. This occurs because the structure learning step is made
for each generation of the optimization, and the populations are generated
by sampling from the distribution learned. The more accurate the structure
learned, the more effective is the sampling for generating good solutions. In
our experiment we tested IBMAP-HC in the Markovianity Optimization Algo-
rithm (MOA) [36], a state-of-the-art EDA, based on Markov network structure
learning. We show that MOA improves its convergence to the optimum when
IBMAP-HC is used to learn the structure. The rest of this work is organized
as follows. Section 2 presents an overview of the independence-based learning
approach and motivates our contribution. Section 3 presents the IBMAP ap-
proach, and Section 4 details our IBMAP-HC algorithm. Section 5 shows our
experiments on synthetic and real datasets, and Section 6 shows our experi-
ments on EDAs. Finally, Section 7 summarizes this work, and poses several
possible directions of future work. The paper also includes two appendices at
the end.
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2 Background

This section provides some background on Markov networks, defines the prob-
lem of structure learning, and motivates our independence-based approach.
Hereon, we use capital letters to denote single random variables, and the sets
of variables in bold. A Markov network representing an underlying distribution
P (V) over a domain of n = |V| random variables V consists in an undirected
graph G, and a set of potential functions, defined by a set of numerical pa-
rameters Θ. The graph G is a map of the conditional independences in P (V),
and such independences can be read from the graph through vertex separation,
considering that each pair of variables (X,Y ) are said to be vertex separated
by a set of variables Z ⊆ V \ {X,Y } when every path between X and Y
in G contains some node in Z [31]. The distribution P (V) can be factorized
into a product of potential functions φc(Vc) over the completely connected
sub-graphs (a.k.a., cliques) Vc of its structure G [17], that is,

P (V) =
1

Z

∏

c∈cliques(G)

φc(Vc),

where Z is the partition function, a constant that normalizes the product of
potentials. Such potential functions are parameterized by the set of numerical
parameters Θ. The problem of structure learning takes as input a dataset D,
which is assumed to be a representative sample of the underlying distribution
P (V). Commonly, D is structured in a tabular format, with one column per
random variable in the domain V, and one row per data point. The optimal
solution of the problem is a perfect-map of P (V) [31], that is, a structure that
encodes all the dependences and all the independences present in P (V). The
closer to a perfect-map, the better is the structure learned, and the better
is the resulting Markov network for representing P (V). Independence-based
algorithms learn a perfect-map by performing a succession of statistical in-
dependence tests, discarding at each iteration all structures inconsistent with
the outcome of the test, and deciding on the tests to perform next based on
the outcomes learned so far.

A statistical independence test is a statistic computed from D for test-
ing if two random variables X and Y are conditionally independent, given
some conditioning set of variables Z; where X, Y and Z are disjoint subsets
of the domain V. This independence assertion is denoted by 〈X⊥⊥Y |Z〉 (or
〈X 6⊥⊥Y |Z〉 for the dependence assertion). The computational cost of a test
is proportional to the number of rows in D, and the number of variables
involved in the test. Examples of independence tests used in practice are Mu-
tual Information [11], Pearson’s χ2 and G2 [2], the Bayesian test [24], and
for continuous Gaussian data the partial correlation test [39], among others.
There are several advantages of independence-based algorithms. First, they
can learn the structure without interleaving the expensive task of parame-
ter estimation, reaching sometimes polynomial complexities in the number of
statistical tests performed. If the complete model is required, the parameters
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can be estimated only once for the learned structure. Another important ad-
vantage of such algorithms is that they are guaranteed to learn the correct
structure of the underlying distribution, as long as the following assumptions
hold: i) graph-isomorphism, i.e., the independences in the distribution can be
encoded in an undirected graph; ii) the underlying distribution is strictly pos-
itive, i.e., P (V) > 0, for every assignment of V; and iii) the outcomes of tests
are correct, i.e., the independences learned are true in P (V). Unfortunately,
the third assumption is rarely true in practice, as the number of contingency
tables for which a statistic has to be computed grows exponentially with the
number of variables in the conditioning set of the test. Therefore, the effec-
tive dataset from which the statistic is computed decreases exponentially in
size, thus degrading exponentially the quality of the statistics. When tests out-
come incorrect independences, independence-based algorithms produce what is
commonly called cascade errors [39] that not only discard the true underlying
structure, but further confuse the algorithm in the test to perform next. Our
approach tackles this main issue of independence-based algorithms by con-
templating the uncertainty in the outcome of the tests through a probabilistic
maximum-a-posteriori approach.

3 The independence-based MAP approach

We now describe the main contribution of this work: the IBMAP approach for
Markov network structure learning. Our approach avoids the cascade errors of
traditional independence-based algorithms that completely trust the outcome
of the statistical tests. For this, the central idea of IBMAP is to pose the
structure learning task as a maximum-a-posteriori problem, by computing the
posterior probability of each possible structure given data. Formally:

G⋆ = argmax
G

Pr(G | D). (1)

In our approach, the posterior Pr(G | D) is computed by combining the out-
come of a set of conditional independence assertions that determine the struc-
ture G. We call this set the closure of the structure. The remainder of this sec-
tion describes how to use the closure for computing the posteriors Pr(G | D).
Next, in Section 4, the IBMAP-HC algorithm is presented as an efficient in-
stantiation of the MAP optimization. Let us first define formally the concept
of a closure:

Definition 1 (Closure) Let G be an undirected independence structure of a
positive graph-isomorph distribution P (V). The closure of G is a set of condi-
tional independence assertions, C(G) = {ci}, that are sufficient for determining
G completely.

Given the above definition, it is possible to replace G by C(G) in Eq. (1),
obtaining:

G⋆ = argmax
G

Pr(C(G) | D). (2)
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The posterior of the closure given data can be seen as a joint probability dis-
tribution over its individual independence assertions, given data. By applying
the chain rule over the assertions in C(G), we obtain:

Pr(C(G) | D) =
∏

ci∈C(G)

Pr(ci|c1, . . . , ci−1, D). (3)

To the best of the author’s knowledge, no method exists for computing exactly
the probabilities Pr(ci|c1, . . . , ci−1, D) of independence assertions conditioned
on other independence assertions and data. A common approximation is to
assume that all the independence assertions in the closure are mutually in-
dependent. This assumption is made implicitly by all the independence-based
Markov network structure learning algorithms [34], because the statistical tests
are used as a black box, only using data for deciding independence for each as-
sertion ci. The result of applying this approximation to Eq. (3) is the following
expression:

Pr(C(G) | D) ≈
∏

ci∈C(G)

Pr(ci | D),

which expressed in terms of logarithms to avoid underflow, results in the fol-
lowing expression that we call the IB-score:

σ(G) =
∑

ci∈C(G)

log Pr(ci | D). (4)

For computing the posteriors of each term log Pr(ci | D) we use the Bayesian
test of conditional independence [24,25]. Finally, since the log function is mono-
tonic, the maximization of the IBMAP approach can be expressed as:

G⋆ ≈ argmax
G

σ(G). (5)

Although computable, this expression is still intractable, as there are 2(
n

2)

possible undirected structures in the search space.

4 The IBMAP-HC algorithm

This section presents our structure learning algorithm IBMAP-HC, our in-
stantiation of the IBMAP approach. IBMAP-HC performs a heuristic hill-
climbing search in the space of possible structures, thus its name. We first
give a high-level overview of the algorithm, and then we describe some specific
aspects, such as the closure used for computing the IB-score, the heuristic
used for speeding-up the search, and the complexity of the overall algorithm.
IBMAP-HC searches the structure with maximum IB-score, considering as
neighboring structures all those structures that result from flipping only one
edge (i.e., single-edge additions or deletions). Algorithm 1 presents its pseudo-
code. The algorithm has as input parameter a dataset D, used for computing
the statistical independence tests. The search starts at line 1 by creating a
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structure G with n nodes (the number of variables in the domain) and no
edges. Then, the IB-score of G is computed in line 2 and saved in the vari-
able current-score. The hill-climbing search starts in the loop of line 3. The
loop iterates by calling the select-next-structure function at line 4 to select the
neighbor of G with maximum score, which is saved in variable G′. Since the
number of possible neighbor structures is

(
n
2

)
, this function is a heuristic for

selecting the best neighbor, avoiding the expensive cost of computing the IB-
score for all of them. This is explained in detail in Section 4.2. Then, in line 5
the score of the best neighbor is computed, and saved in the variable neighbor-
score. The algorithm stops when the neighbor proposed does not improve the
current score, a condition checked at line 6. If the termination criterion is not
reached, the variables G and current-score are assigned with the values of the
variables G′ and neighbor-score in lines 9 and 10, and the process is repeated
until a local optimum is found. For computing the IB-score σ of the candidate

Algorithm 1 IBMAP-HC (dataset D)
1: G← empty structure with n nodes // n is the domain size

2: current-score ← σ(G)
3: repeat
4: G′ ← select-next-structure(G, σ(G)) // see Algorithm 2 and Section 4.2

5: neighbor-score← σ(G′) // see incremental computation in Section 4.1

6: if neighbor-score ≤ current-score then
7: return G // local maximum reached

8: else
9: G← G′

10: current-score ← neighbor-score // an ascent in the hill-climbing search

structures (lines 2 and 5) we define a closure called the Markov blanket closure,
presented in the next subsection. This closure has been designed to determine
a structure with a number of independence tests which is quadratic in the
number of variables in the domain.

4.1 Markov blanket closure

The Markov blanket closure is a closure set that follows Definition 1. This
closure has been designed using the Markov blanket of a domain variable X,
denoted here BX . In terms of graphs, the Markov blanket of X is defined
as the set of all the nodes connected by an edge to the node of X in the
structure [31,19], i.e., its adjacency set. In terms of independences, this allows
to consider thatX is conditionally independent of all its non-adjacent variables
in the graph, given its Markov blanket. By this property, we define the Markov
blanket closure as a set of closures that can be computed independently, one
for each variable. Formally:

Definition 2 (Markov blanket closure) The Markov blanket closure of a
structure G is a set of assertions determined by the union of a set CX(G) of
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independence and dependence assertions for each variable X in the domain
V, i.e.,

C(G) =
⋃

X∈V

CX(G), (6)

where each CX(G) is the union of two mutually exclusive sets of assertions:

CX(G) =
{
〈X 6⊥⊥Y |BX \{Y }〉 : Y ∈BX

}
∪

{
〈X⊥⊥Y |BX〉 : Y /∈BX

}
, (7)

that is, for each neighbor of X (Y ∈ BX) add a conditional dependence
assertion between both variables conditioning on BX \ {Y }; and for each non-
neighbor of X (Y /∈ BX), add a conditional independence assertion between
both variables conditioned on BX .

The following theorem states that the Markov blanket closure is indeed a
closure, that is, it completely determines the structure G used to construct it.

Theorem 1 Let G be an undirected independence structure of a positive graph-
isomorph distribution P (V). The Markov blanket closure of G is a set of con-
ditional independence assertions that are sufficient for completely determining
the structure G.

Proof The formal proof of this theorem is presented in Appendix A.

This closure contains n × (n − 1) assertions, a number which is quadratic in
the size of the domain, that is, n − 1 assertions for each of the n variables.
This allows to decompose the computation of the IB-score of Eq. (4) in n
independent variable IB-scores :

σ(G) =
∑

X∈V

σX(G), (8)

where σX(G) =
∑

ci∈CX(G)

log Pr(ci | D). This decomposition permits to com-

pute incrementally the score of any neighbor structure G′, based on a previous
computation of the score of a structure G. Given that G and G′ differs by an
edge (X,Y ), the only blankets affected are BX and BY , requiring to recom-
pute only σX and σY , and reusing the (n − 2) remaining variable IB-scores.
Consequently, the cost of computing σ(G′) from σ(G) in line 5 of Algorithm 1
is reduced from n × (n − 1) to 2 × (n − 1) tests, i.e., from O(n2) to O(n)
tests. Finally, for convenience of the explanation of the select-next-structure
function in the next section, let us further decompose Eq. (8) considering that
each variable IB-score σX(G) is composed by (n − 1) terms σX,Y (G), called
pairwise IB-scores, as follows:

σ(G) =
∑

X∈V

∑

Y ∈V\{X}

σX,Y (G). (9)
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According to Eq. (7), each pairwise IB-score σX,Y is obtained by computing
the following posterior from data:

σX,Y (G) =

{
log Pr(〈X 6⊥⊥Y |BX − {Y }〉 | D) if (X,Y ) is an edge in G,
log Pr(〈X⊥⊥Y |BX〉 | D) otherwise.

}
.

(10)
The next section shows the heuristic used by the select-next-structure function
for reducing the computation time of finding the neighbor of a structure that
maximizes the IB-score.

4.2 Heuristic for selecting the best neighbor structure

The näıve procedure for selecting the neighbor structure with maximum score
would iterate over all the

(
n
2

)
neighbors that differ in one edge, computing the

IB-score of each one. For each neighbor, n × (n − 1) statistical tests need to
be performed for computing its IB-score using the Markov blanket closure,
resulting in a total cost of O(n4) tests for each ascent in the hill-climbing
search. By incrementally computing the IB-score of each neighbor, the cost
of each ascent still results in a cost of 2 × (n − 1) statistical tests for each
structure, with a total cost of O(n3) tests for each ascent. In order to reduce
this expensive computation time, IBMAP-HC uses a heuristic that estimates
the optimal neighbor without a single test computation, i.e., a cost of O(1)
test computations. The select-next-structure function is shown in Algorithm 2.

Algorithm 2 select-next-structure (G, σ(G))

1: (X∗, Y ∗)← argmin
(X,Y )∈(V×V),X 6=Y

σX,Y (G) + σY,X(G)

2: G′ ← G with (X∗, Y ∗) flipped
3: return G′

It has as input parameter the current structure G and its corresponding score
σ(G), which at this point is already computed. The function first selects in
line 1 the “optimal” pair (X∗, Y ∗) as the least accurate edge (or absence of
edge) in the current structure G. It can be done by representing σ(G) as a
data structure which contains the n× (n− 1) pairwise scores σX,Y (G), using
the decomposable form of Eq. (9). Then, the best neighbor G′ is constructed
in line 2 as a copy of G with the pair (X∗, Y ∗) flipped, and this is returned.
To understand the minimization shown in line 1 of Algorithm 2, note that the
number of neighbors differing by one edge is the same than the number of
different pairs of variables (X,Y ), i.e., n× (n− 1)/2 pairs. From this point of
view, Eq. (9) can be seen as a sum of two pairwise IB-scores per each pair of
variables, resulting in the following expression of the IB-score:

σ(G) =
∑

(X,Y )∈V×V,X 6=Y

σX,Y (G) + σY,X(G). (11)
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With this form of σ(G), it is clear that the minimization finds the pair (X∗, Y ∗)
whose contribution to σ(G) is the smallest. The assumption made by the
heuristic is that the structure resulting from flipping (X∗, Y ∗) would be similar
than maximizing the IB-score among the neighboring structures. As explained
in Section 4.1, for incrementally computing σ(G′) from σ(G) only σX(G′) and
σY (G

′) need to be recomputed. The approximation made in the minimization
consists in assuming that σX(G′) ≈ σX,Y (G

′), and σY (G
′) ≈ σY,X(G′), ignor-

ing the remaining terms σX,W (G′) and σY,W ,W ⊆ V \ {X,Y }. This is based
in the fact that, from G to G′, it is expected a strong change in the terms σX,Y

and σY,X , since the posterior of dependence is used in one structure, and the
posterior of independence is used in the other. In contrast, the terms ignored
are assumed to have a mild change, because only the Markov blanket of X and
Y has a change, and therefore these assertions only vary in the conditioning
set. The approximation is possible because the pairwise IB-scores correspond-
ing to the flipped edge σX,Y (G

′) and σX,Y (G) are complementary in both
structures G and G′, since the posterior of independence and the posterior of
dependence sums 1. It allows to estimate σX,Y (G

′) from the same pairwise
IB-score σX,Y (G), without a single test computation. This estimation is made
implicitly by the minimization. This heuristic assumes that the ignored terms
should have a minimal impact in the search for the optimal neighbor. This
is of course an approximation, and only empirical results may shed light on
its effectiveness. In the worst case, the approximation would result in the se-
lection of a sub-optimal neighbor. This, however, is not different from many
optimization algorithms that follow sub-optimal paths (e.g., the well-known
Metropolis-Hastings search algorithm that may follow a sub-optimal neighbor
according to its proposal distribution). Given the complexity of the problem,
the impact of this approximation can only be assessed empirically. Later ex-
periments show that despite this approximation, our approach is useful for
avoiding the cascade effect of traditional independence-based algorithms, out-
performing always the state-of-the-art algorithms when data are scarce. Ad-
ditionally, Appendix B presents empirical measurements of the landscape of
the IB-score for several synthetic datasets, showing that in most cases, our
structure selection strategy finds nearly optimal scores.

4.3 Complexity of IBMAP-HC

This section summarizes the resulting computational cost of the whole al-
gorithm using the hill-climbing search, the Markov blanket closure, and the
select-next-structure function. To begin, the most expensive operation of the
algorithm is the computation of the IB-score of the initial structure at line 1 of
Algorithm 1, which is computed non-incrementally, using the n× (n− 1) tests
of the Markov blanket closure; this is a cost of O(n2) tests. Next, in the main
loop of Algorithm 1, calling the select-next-structure function has a cost of
O(1), and the incremental computation of σ(G′) at line 5 requires to compute
2 × (n − 1) tests; this is a cost of O(n). Finally, denoting by M the number
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of ascents until termination, the overall computational cost of the algorithm
is O(n2 +Mn). Since M can be obtained only empirically, the experimental
section shows measurements of M on different scenarios, proving empirically
that M is not a source of an extra degree in the complexity because it grows
sub-linearly with n, resulting in an overall computational complexity of O(n2)
statistical tests.

5 Experimental results

This section describes several experiments on synthetic and real datasets for
testing empirically the robustness of our approach IBMAP, and the efficiency
of our algorithm IBMAP-HC. We report a detailed and systematic experi-
mental comparison between IBMAP-HC and state-of-the-art independence-
based structure learning algorithms. We show a comparison of the quality of
structures learned by our solution, against the quality of structures learned by
GSMN [9], a state-of-the-art independence-based algorithm in terms of quality.
We introduce also a competitor called HHC-MN as an adaptation for learning
the structure of Markov networks of the HHC algorithm [5], a state-of-the-art
independence-based algorithm for learning Bayesian networks. For comparing
all the algorithms on the same ground, we ran all of them using the Bayesian
test [24] as statistical independence test. The GSMN algorithm learns a struc-
ture by finding the Markov blanket of each variable of the domain with the
GS algorithm [26], and then the solution structure is constructed by adding
an edge between each variable and the variables found in its Markov blanket.
The GS algorithm learns the Markov blanket of a variable X in two phases:
the grow and shrink phases. During the grow phase, the algorithm increases
the tentative Markov blanket with every variable Y that is found dependent
on X, conditioning on the currently tentative Markov blanket. At the end
of this phase, the tentative Markov blanket contains all members of the true
Markov blanket, but potentially includes some false positives that are non-
members. These false positives are removed during the shrink phase, where
variables found independent of X conditioned on the current Markov blanket
are removed from this set. At the end of this phase, the tentative Markov blan-
ket matches the true Markov blanket, under the assumption of correctness of
tests. The computational complexity of this algorithm is O(n2) in the number
of independence tests for discovering the structure. The HHC algorithm learns
the structure by learning the set of parents and children (PC) of each variable
through the interleaved HITON-PC with symmetry correction algorithm [6,
4]. The pseudo-code of this algorithm can be seen at [4] (Figure 6, page 192).
For learning the PC of a variable X, this algorithm starts with an empty can-
didate PC set, ranking the variables by priority for inclusion in the candidate
set by unconditional dependence with X, and discarding the variables found
unconditionally independent with X. Then, the algorithm utilizes an inclu-
sion heuristic function that accepts each variable into the candidate PC set. If
any variable inside the candidate set becomes independent with X given some
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subset of the candidate set, then the algorithm removes that variable from
the candidate set and never considers it again. The inclusion function and the
elimination strategy are iterated interleaved until there are no more variables
to examine for inclusion. The complexity of the HITON-PC is O(n2τ ), where τ
is the largest size of the PC set found, and the complexity of HHC is O(n22τ ),
because HITON-PC is executed for each variable of the domain. For Markov
networks, the equivalent of the PC of a variable are its neighbors, which corre-
sponds to its Markov blanket. It is therefore expected that HITON-PC learns
the Markov blanket of a Markov network, and thus it can be used as part of
HHC to learn the undirected structure. This fact is not proven analytically
here, but confirmed empirically for all the cases considered in this section.
To get a Markov network learning algorithm we simply omit the final step of
HHC that orients the edges to obtain the Markov blanket from the PC set,
denoting the resulting algorithm by HHC-MN. The three following subsec-
tions describe our experiments over synthetic (Sections 5.1 and 5.2) and real
datasets (Section 5.3).

5.1 Synthetic data experiments: random underlying structures

A first set of experiments was conducted on synthetic datasets, generated by
using a Gibbs sampler on randomly generated Markov networks (structure
plus parameters). This allows a systematic and controlled study, and provides
datasets with known underlying structures to control the complexity of the
problem, and to better assess the quality of the structures learned by each
algorithm. For measuring the structural errors of the structures learned, we
report the Hamming distance between the learned structure and the underly-
ing one, i.e., the sum of false positive and false negative edges of the learned
structure. Another quality measure that we use in this work for assessing the
structures learned, is the well known F-measure, a harmonic mean of precision
and recall quality measures, commonly used in the information retrieval com-
munity. Precision indicates how good was the algorithm in learning correct
independences (that is, the relation between the true independences that were
found, over all independences found by the algorithm). Instead, recall indicates
how good was the algorithm in learning independences, but over all the correct
independences present in the real structure (that is, the relation between the
correct independences that were found, over the total of independences in the
underlying structure). Then, the F-measure is computed as follows:

F-measure =
2× precision× recall

precision+ recall
.

Additionally, at the end of this section, we show the runtime of our experi-
ments, in order to discuss the computational complexities of the competitor
algorithms. The synthetic random Markov networks were generated for do-
mains of n ∈ {100, 200, 500} binary variables. For each domain size, 10 ran-
dom networks were generated for increasing connectivities τ ∈ {1, 2, 4, 8}, by
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Random structures: Hamming distance results.
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Fig. 1 Mean and standard deviation over 10 repetitions of the Hamming distance
of the models learned by algorithms GSMN (black bars), HHC-MN (gray bars), and
IBMAP-HC (light gray bars) for increasing sizes of random synthetic datasets, domain
sizes n = 100 (first column), n = 200 (second column), and n = 500 (third column), and
τ ∈ {1, 2, 4, 8} in the rows.

considering as edges the first nτ/2 variable pairs of a random permutation of
the set of all variable pairs. It is worth mentioning that with increasing values
of τ , it is increasingly difficult to learn the structure. Given these Markov net-
works, we report the quality of structures learned by GSMN, HHC-MN, and
IBMAP-HC using portions of each dataset with increasing number of data-
points D ∈ {25, 50, 100, 200, 400, 800, 1600, 3200}, for each (n, τ) combination.
The independence structure determines the factorization of the distribution
into potential functions over subset of variables, one per clique in the struc-
ture. To determine a complete model we must determine the numerical pa-
rameters that quantify these potential functions. For the datasets generated
to correctly and strongly represent the direct dependencies encoded by the
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edges, we considered in these experiments pairwise cliques for the factoriza-
tion of the models, that is, two-variable factors φ(X,Y ) for each edge in the
random structure generated, and set the numerical parameters so that the cor-
relation between them is strong. For that, we forced the parameters to result

in a log-odds ratio of each pairwise factor εX,Y = log
(

φ(X=0,Y=0)φ(X=1,Y=1)
φ(X=0,Y=1)φ(X=1,Y=0)

)

to be equal to 1.0 for all edges (see [2]). This results in an equation over the
values of the potential function with 4 unknowns. We then randomly chose
3 parameters in the range [0, 1], and solved for the remaining one. Figures 1

Random structures: F-measure results
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Fig. 2 Mean and standard deviation over 10 repetitions of the F-measure of the models
learned by algorithms GSMN (black bars), HHC-MN (gray bars), and IBMAP-HC (light
gray bars) for increasing dataset sizes of random synthetic datasets, domain sizes n = 100
(first column), n = 200 (second column), and n = 500 (third column), and τ ∈ {1, 2, 4, 8}
in the rows.

and 2 show the mean values and standard deviations over the ten repetitions
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of the Hamming distances and F-measure for the structures learned by the
algorithms considered, respectively. The plots are ordered by columns for dif-
ferent n values, and by rows for different τ values. As expected, the results
show that for all the algorithms, the more complex the underlying structure
(determined by n and τ), the larger is the number of structural errors for
any value of D used. It can be seen that for any algorithm and for any fixed
value of D, the amount of errors grows with n (different columns), and also
it grows with τ (different rows). Since GSMN and HHC-MN follow the tra-
ditional independence-based approach, it is expected for them to obtain very
good qualities when data are sufficient, i.e., those cases with larger values of
D and lower values of τ . The figures show clearly that both, IBMAP-HC and
HHC-MN always learn structures with qualities significantly better (lower
Hamming distance, and higher F-measure) than that of GSMN. For all the
cases of n and τ , GSMN has the slowest convergence in D to reduce the struc-
tural errors. For the selected domain sizes, GSMN tends to add many false
positives in the grow phase, which requires the shrink phase to perform unre-
liable tests involving many variables. It produces numerous cascade errors. In
the case of HHC-MN, it can be seen that the structural errors are reduced sig-
nificantly with respect to GSMN. These improvements are obtained by the use
of its elimination strategy, as well as the interleaving of the inclusion heuristic
function with the elimination strategy. When compared to IBMAP-HC, the
latter always outperforms HHC-MN in terms of structural errors, except in
the following specific cases:

• τ = 2, n ∈ {100, 200, 500}, D ∈ {400, 800}
• τ = 4, n ∈ {100, 200, 500}, D ≥ 200.

In the above cases the data seem to be sufficient for HHC-MN to outperform
our algorithm IBMAP-HC. This is because for τ < 8 the underlying struc-
tures have not a dense topology, and the elimination strategy results to be
very efficient. In contrast, for the case of τ = 8, the data are not sufficient
for HHC-MN to work as well, due to the exponential size of tests required
in the elimination strategy. In this extreme case, the conditioning sets are at
average of 8 variables, and in those cases the tests require larger amounts of
data to be reliable. In general, the figures confirm that IBMAP-HC always
outperforms significantly the competitors when data are scarce (D ≤ 100).
This confirm our hypothesis that the probabilistic approach of IBMAP avoids
the cascade effect of traditional independence-based algorithms. Also, when
the data are sufficient (D > 100) the qualities obtained are very competitive.
Figure 3 shows the corresponding running times of the same experiment, ex-
pressed in milliseconds. To give the times more meaning, take into account
that all our experiments were performed on an AMD Athlon(tm), with 3.0
GHz and 4 GB of main memory. Our results show clearly that GSMN is the
more expensive algorithm in all the cases of τ ∈ {1, 2, 4}. This is because it
tend to add many false positives in the grow phase, and then the shrink phase
require to perform tests that contains many variables, which is a source of
extra computational cost. There are some extreme cases where IBMAP-HC is
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Random structures: Runtime results (in milliseconds)
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Fig. 3 Mean and standard deviation over 10 repetitions of the runtime required by algo-
rithms GSMN (black bars), HHC-MN (gray bars), and IBMAP-HC (light gray bars) for
increasing dataset sizes of random synthetic datasets, domain sizes n = 100 (first column),
n = 200 (second column), and n = 500 (third column), and τ ∈ {1, 2, 4, 8} in the rows.

more expensive than GSMN, such as n = 500, τ ∈ {1, 2, 4}, and D ≥ 800.
In those cases, the hill-climbing search of IBMAP-HC seem to be the more
expensive alternative. HHC-MN is the algorithm that requires lowest com-
putation time for the cases of τ ∈ {1, 2, 4}, and D ≥ 200. This is because
the inclusion heuristic interleaved with the elimination strategy is really effec-
tive when the underlying structure has a low value of τ , and D is sufficiently
large to obtain more reliable tests. In these situations, the algorithm con-
verge to the termination criterion quickly. Instead, in the case of τ = 8 (last
row), HHC-MN is the most expensive algorithm. This is due to the exponen-
tial cost of the elimination strategy, that performs a test for all the subsets
of the current conditioning set, which in this case is 8, on average. To con-
clude this section, we show an additional experiment to confirm empirically
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that IBMAP-HC achieves polynomial time complexities with the number of
random variables in the domain, as stated in Section 4.3. This is shown by Fig-
ure 4, that presents measurements ofM (number of ascents in the hill-climbing
search) for increasing problem sizes n. Such results were obtained for datasets
generated in the same way as the previous experiments. The figure shows the
average values of M over ten repetitions, for problems with increasing values
of n ∈ {4, 12, 16, 20, 24, 30, 50, 75, 100, 200, 500} in the X-axis, D = 1000, and
a line for each τ ∈ {1, 2, 4, 8}, indicating that M (Y-axis) grows sub-linearly.
We omit results for different D values because they are similar.
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Fig. 4 Measurements in the number of ascents M (Y-axis) in the hill-climbing search of
IBMAP-HC for increasing values of n (X-axis), and τ ∈ {1, 2, 4, 8}, D = 1000.

5.2 Synthetic data experiments: Ising models

A second set of experiments over synthetic datasets were conducted over un-
derlying structures with a different topology: the Ising spin glasses models,
that are mathematical models of ferro-magnetism in statistical mechanics,
also used in the last decades in many other domains, such as computer vi-
sion applications [23]. Using such models as underlying structure, ten datasets
were generated for random Ising models with n ∈ {100, 200, 500, 750} binary
variables. Figure 5 shows the results for ten different random repetitions. The
graphs in this figure are ordered by rows for different n values, and showing the
mean value and standard deviation of the Hamming distance, the F-measure
and the runtime in the first, second and third columns, respectively. These fig-
ures show clearly that both, IBMAP-HC and HHC-MN always learn structures
with lower Hamming distance, and higher F-measure than GSMN (first and
second column). In all the cases, the GSMN algorithm has the slowest conver-
gence in D to reduce the structural errors among the three algorithms. With
respect to HHC-MN, it can be seen that it has always lower structural quality
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Ising models
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Fig. 5 Mean and standard deviation over 10 repetitions of the Hamming distance (first col-
umn), F-measure (second column) and runtime (third column) of algorithms GSMN (black
bars), HHC-MN (gray bars), and IBMAP-HC (light gray bars) for increasing dataset sizes
of Ising synthetic datasets, and domain sizes n ∈ {100, 200, 500, 750} in the rows.

than IBMAP-HC, except in the specific case of n = 100, D = 3200, where the
data seem to be sufficient for HHC-MN to improve the quality of IBMAP-HC.
In general, the figures confirm that IBMAP-HC outperforms significantly the
competitors in terms of quality. This also confirm our hypothesis that the
probabilistic approach of IBMAP avoids the cascade effect of the traditional
independence-based algorithms. With regard to the computational complex-
ity results (third column), Figure 3 shows the corresponding running times,
expressed in milliseconds. The computer used for running these experiments
was the same described in the previous section. These results show clearly that
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GSMN is the more expensive algorithm for all the cases, except in the specific
cases:

• n ∈ {200, 500, 750}, D ≤ 100, where HHC-MN is the more expensive;
• n ∈ {500}, D = 3200, where IBMAP-HC is the more expensive.

For the rest of the cases, IBMAP-HC has the better runtime, except in the
following cases, where HHC-MN has the better runtime:

• n ∈ {100, 750}, D = 3200;
• n ∈ {500}, D ≥ 800.

The analysis of these runtimes is similar to the analysis of the previous section,
with GSMN with an expensive cost, due to the large amount of expensive
tests (many false positives in the conditioning set), HHC-MN with a very
good performance when data are sufficient, and IBMAP-HC with the best
performance when data are not sufficient (D < 200).

5.3 Benchmark datasets experiments

In this section we show our experiments on real-world benchmark datasets, ob-
tained from the UCI Repositories of machine learning [1] and KDD datasets
[18]. Since the underlying network is unknown in these datasets, it is not possi-
ble to compute neither the Hamming distance nor the F-measure. Instead, we
utilize the accuracy, a quality measure that counts the number of conditional
independences present in data, which are correctly encoded by the structure
learned. This measure was used for the same purpose in other related works
[9,25,7]. In contrast with other measures that evaluate the density of the com-
plete probability distribution (e.g. the Conditional Marginal Log-Likelihood),
the accuracy is better suited for the goal of learning of this work (knowledge
discovery) because it evaluates specifically structural errors. The accuracy is
defined as a normalized measure for counting the number of matches in a com-
parison of the independence queries that hold in a test set, and also hold in the
structure learned from a training set. The conditional independences are read
from the learned structure by vertex separation (see Section 2). If T denotes
the set of all possible conditional independence queries over the set of domain
variables V, it is checked for how many queries t ∈ T , t is independent (or
dependent) in both the test set, and the learned structure from the training
set. Then, the number of matches is normalized by |T |. Unfortunately, the
size of T is exponential, so the approximated accuracy is computed over a
randomly sampled subset T̂ , uniformly distributed for each possible condi-
tioning set size. In our experiments we used |T̂ | = 100×

(
n
2

)
, i.e., a hundred of

conditional independence queries per conditioning set size. We conducted our
experiment using 19 real-world datasets, listed in Table 1, column one. The
datasets are sorted by domain size (n) in the second column. For each dataset
D, we shuffled the data and then divided it into a training set for learning
the structure (75%), and a test set for computing the accuracy (25%). The
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table also shows information about the number of attributes (second column),
and the number of datapoints available in the train and test sets (third and
fourth column). For each dataset we used the train set as input to the GSMN,
HHC-MN, and IBMAP-HC algorithms, and the accuracy obtained for the
structure learned for each algorithm is shown in the fifth, sixth and seventh
columns, respectively. For each dataset, the best performance among the three
algorithms is indicated in bold. These results show that in 10 of 19 datasets
IBMAP-HC resulted in better accuracy, 6 cases resulted in ties (2 with GSMN,
1 with HHC-MN, and 3 with both), and for the remaining cases, the best re-
sults are obtained by HHC-MN(2 cases) and GSMN (1 case). The cases where
IBMAP-HC always outperforms it competitors are those with n ≥ 16. In those
cases, data seem to be scarce (see the third column). That is consistent with
our results in synthetic datasets, where IBMAP-HC outperforms always its
competitors when data are scarce.

Train Test accuracy
Dataset n D D GSMN HHC-MN IBMAP-HC
baloons 5 14 5 0.950 0.897 0.950

balance-scale 5 468 156 0.516 0.516 0.516
iris 5 112 37 0.695 0.742 0.736

lenses 5 17 6 0.881 0.875 0.881
hayes-roth 6 98 33 0.516 0.516 0.516

car 7 1295 432 0.629 0.641 0.703
monks-1 7 416 139 0.905 0.905 0.905
nursery 9 9719 3240 0.392 0.415 0.649
ecoli 9 251 84 0.523 0.591 0.694

machine 10 156 52 0.590 0.567 0.679
cmc 10 1104 368 0.759 0.711 0.726

tic-tac-toe 10 718 239 0.671 0.684 0.498
echocardiogram 13 45 15 0.696 0.745 0.745

crx 16 489 163 0.578 0.593 0.609
hepatitis 20 59 20 0.496 0.633 0.796
imports-85 25 144 28 0.368 0.377 0.596

flag 29 145 48 0.446 0.451 0.803
dermatology 35 268 53 0.234 0.265 0.754

bands 38 207 69 0.399 0.408 0.546

Table 1 Accuracy for several benchmark data sets. The structure is learned using a sub-
sample called train set, and the accuracy is computed using the test set. For each evaluation
measure, the best performance is indicated in bold.

6 IBMAP-HC for Estimation of Distribution Algorithms

In contrast to benchmark datasets that comes from arbitrary applications, we
present now results of evaluating IBMAP-HC in a real-world application of
knowledge-discovery: the Estimation of Distribution algorithms (EDAs) [30,
20]. These are variations of the well-known evolutionary algorithms, that per-
form the same selection and variation stages, but replace the crossover and
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mutation stages with the estimation and sampling in the task of generating
a new population. The former stage estimate a probability distribution from
the current population, generating the next population by sampling from it
(thus their name). In the estimation stage, EDAs estimate the probability dis-
tribution from the dataset corresponding to the current population. This is
because they associate each gene to a random variable, each individual to a
joint assignment of these variables, and the selected population to a sample
of the distribution. The rationale for replacing crossover methods with esti-
mation is that by estimating the distribution from the selected individuals,
that is, those best fitted, the sampling stage would produce novel, yet well-
fitted individuals. Recently, several Markov network based EDAs has been
proposed to model the distribution of populations [33,3,35,36]. As a test-bed
we considered the Markovianity Optimization Algorithm (MOA) [36]. This is
a state-of-the-art MN-based EDA that learns the Markov network structure
from the population using an efficient structure learning algorithm based on
mutual information (MI), a simple independence-based structure learning al-
gorithm, described in detail in the same work, and designed specifically for
MOA. The sampling in MOA is conducted through a variation of a Gibbs
sampler that requires only the structure of the model, avoiding the need to
learn the model parameters. The implementation of MI in MOA takes ad-
vantage of experts information indicating the maximum number of neighbor
variables that a variable can have, denoted here k. We tested MI for different
values of k (results not shown here), observing great sensitivity of MI to its
value. Our algorithm IBMAP-HC does not use such a parameter. In the exper-
iments below we set the value of k for MI to be the closest to the true value,
resulting in the best possible performance of MI, i.e., the strongest competi-
tor for IBMAP-HC. We conducted experiments to compare IBMAP-HC as an

MOA MOA’
n D∗ f∗ D∗ f∗

15 50 267.50 (35.45) 50 202.50 (14.19)
30 200 1170.00 (94.87) 100 475.00 (42.49)
60 800 5200.00 (98.46) 200 1050.00 (52.70)
90 800 5560.00 (126.49) 400 2220.00 (63.25)
120 1600 11200.00 (871.53) 800 4400.00 (312.33)

Table 2 Results of MOA and MOA’ (that uses IBMAP-HC) for the OneMax problem,
for increasing problem sizes (rows) in terms of critical population size D∗, and mean and
standard deviation over 10 repetitions of the number of fitness evaluations f∗ required to
obtain the global optimum. Lower values of D∗ and f∗ are better.

alternative structure learning within MOA, denoted MOA′, and denoting by
MOA the original version that uses MI. The thesis is that a better structure
learning algorithm improves the convergence of MOA, that is, the optimum is
reached computing fewer evaluations of the fitness of individuals. Both versions
were tested on two benchmark functions widely used in the EDA’s literature:
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Royal Road and OneMax, both bit-string optimization tasks, detailed in [29].
The reason these benchmark functions are widely used is that they are hard
to optimize, because the fitness landscape is flat for large areas and then dis-
continuous. In the context of evolutionary algorithms these functions model
each bit-string as a chromosome and each bit as a gene. In the Royal Road
problem, the variables are arranged in groups of size γ. Its goal is to maximize
the number of 1s in the string, but adding γ to the fitness count only when
a group has all 1s, otherwise adding 0. For example, in the case of γ = 4,
an individual 111110011111 is separated in the groups [1111] [1001] [1111],
and only the first and third group contribute 4 to the fitness count, which in
the example equals 8. The underlying independence structure that should be
learned therefore contains cliques of size γ, one per group. In our experiments
we used γ = 1 and γ = 4. The former is known in the literature as OneMax.
In the example, the fitness is 10 for OneMax. Clearly, the optimal individual
for both problems is 111111111111. In the experiments, MOA is iterated for

MOA MOA’
n D∗ f∗ D∗ f∗

16 100 545.00 (59.86) 50 337.50 (176.09)
32 400 3800.00 (210.82) 400 2140.00 (134.99)
64 800 9120.00 (252.98) 800 4440.00 (126.49)
92 1600 18400.00 (533.33) 800 5080.00 (500.67)
120 1600 31120.00 (822.31) 1600 9840.00 (386.44)

Table 3 Results of MOA and MOA’ (that uses IBMAP-HC) for the Royal Road problem,
for increasing problem sizes (rows) in terms of critical population size D∗, and mean and
standard deviation over 10 repetitions of the number of fitness evaluations f∗ required to
obtain the global optimum. Lower values of D∗ and f∗ are better.

1000 generations or until the optimum is reached, whatever happened first.
For several runs differing in the initial (random) population, we measured the
success rate as the fraction of times the optimum is found. A commonly used
performance measure in EDAs is the critical population size D∗; the minimum
population size for which the success rate is 100%. Smaller D∗ values have a
double benefit on runtime: (i) fewer fitness evaluations for reaching the op-
tima, and (ii) faster distribution estimation. We report D∗ and the number of
fitness evaluations required for that population size, denoted f∗. More robust
algorithms are expected to require smaller D∗ and f∗ values. To measure D∗

in Royal Road and OneMax, each version of MOA was run 10 times for each
of the population sizes D = {50, 100, 200, 400, 800, 1600, 3200}. Then, for the
measured D∗, we report the average and standard deviation of f∗ on each of
those runs. In all the experiments, the population is truncated with a selection
size of 50% and an elitism of 50%; used for preventing diversity loss. In MOA,
the parameter k was set to 3 and 1 in Royal Road and OneMax, respectively.
Results are presented in Table 2 for the OneMax problem, and Table 3 for
the Royal Road problem. For both algorithms MOA and MOA′, each table
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reports the values of D∗ as well as both the average and standard deviation of
f∗, for increasing problem sizes n ∈ {15, 30, 60, 90, 120} for the OneMax prob-
lem, and n ∈ {16, 32, 64, 92, 120} for the Royal Road problem (the domain size
should be a multiple of γ = 4). Lower values of D∗ and f∗ are better. In both
tables, the results show that MOA′ always present equal or lower values of D∗

than that of MOA, and also MOA′ always outperforms MOA in f∗. For Royal
Road, the larger improvement is for n = 92 where MOA′ requires 75% fewer
fitness evaluations f∗ and D∗ is halved. For OneMax, the larger improvement
is for n = 60 where MOA′ requires 80% fewer fitness evaluations f∗ and D∗ is
reduced to a quarter. An interpretation of these results is that IBMAP-HC es-
timates better the distribution at each iteration. To confirm this hypothesis
we compared the structures learned by the two algorithms over our synthetic
datasets. For a dataset with n = 75, D = 100, τ = 2, the Hamming distances
of MI and IBMAP-HC were 132, and 75, respectively. For τ = 4 they were 233
and 143, respectively; and for τ = 8, 395 and 388, respectively. These results
show clearly that the quality of IBMAP-HC indeed outperforms that of MI.
Finally, we highlight that the efficiency of IBMAP-HC allowed it to be run
in large problems up to 120 genes in size, estimating the structure over many
generations.

7 Conclusions and future work

This paper proposes IBMAP, a novel independence-based maximum-a-posteriori
approach for learning the structure of Markov networks; and IBMAP-HC, an
efficient instantiation of IBMAP. Our approach avoids the cascade errors of
traditional independence-based algorithms that completely trust the outcome
of statistical tests. For this, the central idea of IBMAP is to pose the structure
learning task as a maximum-a-posteriori problem, by computing the poste-
rior probability of each possible structure given data. Experiments comparing
IBMAP-HC against state-of-the-art independence-based algorithms indicate
that our method improves in most cases over the independence-based competi-
tors with equivalent computational complexities. IBMAP-HC was also tested
in a practical, challenging setting: Estimation of Distribution algorithms, re-
sulting in faster convergence to the optimum than a state-of-the-art Markov
network EDA algorithm, for the selected benchmark functions. Our experi-
mental results and the conclusions of Appendix B confirm the effectiveness of
our structure selection strategy. Therefore, we believe that it is worth guid-
ing our future work in improving the IB-score as a measure of Pr(G | D), i.e.,
relaxing the independence assumption made in Equation (4), as well as explor-
ing alternative closure sets. Also, it is clearly worthwhile considering testing
our approach in more practical real-world testbeds, potentially comparing its
performance against state-of-the-art score-based algorithms, such as [16,32,
13,40].



24 Federico Schlüter et al.
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A Correctness of the Markov blanket closure

This appendix presents a formal proof that the Markov blanket closure described in Defini-
tion 2 of Section 4.1 is in fact a closure, i.e., its independence assertions completely determine
the structure used to generate it. Let us start by reproducing some necessary theoretical
results extracted from [19,21,31]: the pairwise Markov property, the Intersection property

of conditional independence, and the Strong Union property of conditional independence,
all satisfied by any Markov network G of a positive graph-isomorph distribution P :

Definition 3 (Pairwise Markov property) Let G be a Markov network of some graph-
isomorph distribution P , then

(X,Y ) /∈ E(G)⇔ 〈X⊥⊥Y |V \{X,Y }〉 in P . (12)

Definition 4 (Intersection) The conditional independences among random variables of
a positive distribution P satisfy the Intersection property (expressed in counter-positive
form):

〈X 6⊥⊥Y |Z〉 ∧ 〈X⊥⊥W |Z, Y 〉 ⇒ 〈X 6⊥⊥Y |Z,W 〉 (13)

for all (X 6= Y 6= W ) /∈ Z.

Definition 5 (Strong Union) The conditional independences among random variables of
a graph-isomorph distribution P satisfy the following Strong Union property of conditional
independence:

〈X⊥⊥Y |Z〉 ⇒ 〈X⊥⊥Y |Z,W 〉 (14)

for all (X 6= Y ) /∈ Z.

We present now two auxiliary lemmas that relate independences with edges in the graph:

Lemma 1

〈X⊥⊥Y |BX \{Y }〉 ⇒ (X,Y ) /∈ E(G). (15)

Proof. The proof proceeds by first applying the Strong union property to the l.h.s. to
obtain 〈X⊥⊥Y |V \ {X,Y }〉, and then applying the pairwise property to conclude the r.h.s.
(X,Y ) /∈ E(G). ⊓⊔

For the remaining of the proof we need to argue that something similar to the counter-
positive of Lemma 1 holds:

Lemma 2

〈X 6⊥⊥Y |BX \{Y }〉 ∧ ∀W /∈ BX〈X⊥⊥W |Z, Y 〉 ⇒ (X,Y ) ∈ E(G). (16)
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Proof. The proof proceeds by extending the conditioning set BX \{Y } of the l.h.s. to
the whole domain V \{X,Y }, to then apply the counter-positive of Eq. (12) and reach the
r.h.s. (X,Y ) ∈ E(G). For that, we apply the intersection property of Eq. (13) iteratively, by
taking at each iteration the pair containing one of the independences in the l.h.s., and, in
the first iteration the dependence in the l.h.s., and the following iterations the dependence
resulting from applying intersection. In all cases, we take Z = BX\{Y }. Let see this process
in detail. In the first iteration we take from the l.h.s. the dependence and the independence
for the first W , obtaining, by intersection, the dependence 〈X 6⊥⊥Y |Z,W 〉. We can now
take the resulting dependence, with the independence for the following W , denoted for
convenience W ′. It seems that intersection can no longer be applied because the respective
conditioning sets Z∪{W} and Z∪{Y } does not match. However, by graph-isomorphism of
P , we have that the Strong Union property of conditional independence is satisfied in P , and
therefore any independence given some conditioning set follows from the same independence
given a subset of this conditioning set, in particular then, we have that 〈X⊥⊥W ′|Z,W, Y 〉,
and intersection can therefore be applied, resulting in 〈X 6⊥⊥Y |Z,W,W ′〉. Following this
iteratively, we reach 〈X 6⊥⊥Y |V \ {X,Y }〉, where the resulting conditioning set V \ {X,Y } is
the result of Z = BX \{Y } ∪BX , recalling X /∈ BX . ⊓⊔

We can now prove our main theorem:

Theorem 1 Let G be an undirected independence structure of a positive graph-isomorph

distribution P (V). The Markov blanket closure of G is a set of conditional independence

assertions that are sufficient for completely determining the structure G.

Proof. We prove the above theorem by proving that all the edges and no edges in G
are determined by the assertions contained in C(G). We do it separately for absence and
existence of edge between any two variables X and Y :

i) For edge absence: Let (X,Y ) /∈ E(G). Then, by definition, the closure contains the
two independence assertions: 〈X⊥⊥Y |BX\{Y }〉 and 〈Y⊥⊥X|BY\{X}〉, which, by Eq. (15)
of Lemma 1 both imply (X,Y ) /∈ E(G).

ii) For edge existence:
Similarly, let (X,Y ) ∈ E(G). Then, by definition, the closure contains the dependence
assertion: 〈X 6⊥⊥Y |BX \{Y }〉. Also, for all W s.t. (X,W ) /∈ E(G) (i.e., W /∈ BX), the
closure contains 〈X⊥⊥W |BX〉. Then, by Eq. (16) of Lemma 2 we have that (X,Y ) ∈
E(G). ⊓⊔

B IBMAP landscape analysis

In this appendix we report the results of an experiment that analyzes empirically the land-
scape of the IB-score function on synthetic datasets. The experiment consists in an analysis
of the surface of the IB-score over the complete search space of possible structures. The aim
is to assess how good is the hill-climbing search for maximizing the IB-score. Due to the
exponential number of possible networks for each domain, in a first instance we explore how
the complete landscape of IB-score looks like for datasets with a small domain size n = 6.
For this experiment, we used synthetic datasets similar to those used in Section 5.1. The
plots in Figure 6 show in the Y-axes the values of the IB-score for all the possible struc-
tures, and sort the structures in the X-axes, by its Hamming distance to the true underlying
structure in the dataset (this is, from zero, to

(

n

2

)

). Note that the scores of the structures
appear in log probabilities, because they was computed as shown in Equation (4). With this
layout, the structures in the left (near to zero) are those with less structural errors, and
are also those expected to have a higher value of the IB-score. Therefore, the structures in
the right are expected to have lower values of the IB-score. Also, indicated with a diamond,
the structures found by the algorithm IBMAP-HC are shown for each case. The plots are
ordered in the columns for increasing values of the dataset D ∈ {10, 100, 1000}, and in the
rows, the different values of τ ∈ {1, 2, 4, 8}, increasing the complexity of the problem. From
the analysis of such plots, it is observed how the landscape shapes to a decreasing curve as
increasing the value D (see the tendency from left to right columns, and not the change in
scale in the Y-axis). This is achieved because the precision of the statistical tests improves
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Fig. 6 Complete landscape of the IB-score for synthetic datasets with n = 6, for increasing
dataset sizes D = 10 (first column), D = 100 (second column), and n = 1000 (third column),
and τ ∈ {1, 2, 4, 8} in the rows. The X-axis sort the structures in the Hamming distance with
the correct structure. The Y-axis shows the IB-score for all the structures in the landscape.
The structure found by IBMAP-HC is indicated by a diamond.

with increasing D. In second place, the diamond that indicates the position in the land-
scape of the structure learned by the IBMAP-HC algorithm, achieves always the structure
with highest score value. It can be also observed how the error of the structure learned by
IBMAP-HC is closer to zero while increasing D. A second instance of this experiment was

made for a domain size n = 20. In this instance, the landscape contains a total size of 2

(

20

2

)

.
As it is impossible to show the IB-score for the complete landscape, we show only a subset
obtained by generating randomly 5 structures deferring in m edges to the true structure,
with m from 0 to

(20
2

)

in the X-axis. Such results are shown in Figure 7. From the analysis of
such plots, the same conclusions are observed. To conclude this appendix, it is worth noting
that our results confirm the effectiveness of our structure selection strategy in maximizing
the IB-score over the complete landscape. For that reason, we conclude that it is worth
guiding our future work only in the improvement of the IB-score as a measure of Pr(G | D).
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Fig. 7 A fraction of the landscape of the IB-score for synthetic datasets with n = 20, for
increasing dataset sizes D = 10 (first column), D = 100 (second column), and n = 1000
(third column), and τ ∈ {1, 2, 4, 8} in the rows. The X-axis sort the structures in the
Hamming distance with the correct structure. The Y-axis shows the IB-score for all the
structures in the landscape. The structure found by IBMAP-HC is indicated by a diamond.
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