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Abstract. A massive amount of conditional independence tests on data
must be performed in the problem of learning the structure of probabilis-
tic graphical models when using the independence-based approach. An
intermediate step in the computation of independence tests is the con-
struction of contingency tables from the data. In this work we present
an intelligent cache of contingency tables that allows the tables stored to
be reused not only for the same test, in the not uncommon case that the
test must be performed again, but for an exponential number of other
tests, all those involving a subset of the variables of the test stored. In
practice, however, not so many tests actually reuse the tables stored. We
show results when testing the cache with IBMAP-HC, a recently pro-
posed algorithm for learning the structure of Markov networks, a.k.a.
undirected graphical models. The experiments show that in all cases,
above 95% of the running time spent by IBMAP-HC in reading data is
saved by the cache. The savings in running time for IBMAP-HC were up
to 80% for datasets above 40,000 datapoints.

Keywords: Statistical tests of independence, contingency tables, probabilis-
tic graphical models, structure learning.

1 Introduction

This work proposes novel practices for speeding up the execution of a large
number of statistical independence tests (hereon independence tests, statistical
tests, or simply tests). Statistical tests are procedures developed by statisticians
for determining dependences between random variables through an exploratory
analysis of data. An intermediate step in the computation of independence tests
is the construction of contingency tables from data, which requires a scan of the
whole input dataset. Our contribution is a cache over these tables for saving the
computational cost of constructing them from data.

In probability theory, two variables X and Y are said to be independent
(dependent) if the conditional distribution of X given Y matches that of X
alone, i.e., if Pr(X | Y) = Pr(X). This means that the distribution of X is
unaffected by the knowledge that Y takes a certain value. If the above doesn’t



hold, the two variables are said to be dependent. Two variables X and Y are
said to be conditionally independent given a set of variables Z (or alternatively
we say triplet (X,Y | Z) is independent) if the distribution of X given Y and
given Z matches that of X given Z, ie., if Pr(X | Y,Z) = Pr(X | Z). For
dependence, the distributions do not match, ie., Pr(X | Y,Z) # Pr(X | Z).
Intuitively, the independence means that any knowledge of the value taken by
the variables in Z renders any knowledge of the value taken by Y completely
uninformative about the value taken by X. There are many different statistical
tests for assessing independences among random variables. The most commonly
used are the Pearson’s x? and the G? tests [1], the mutual information test
[8], and more recently the Bayesian test [10, 11]. All these tests requires the
computation of contingency tables for analyzing the relation between variables,
and thus can benefit from the speed up introduced in this work.

Contingency tables record the frequency distribution of the variables in a ma-
trix format, and require reading the whole dataset for computing each frequency
(see more in Section 1.2). The novelty of our approach consists in a procedure
that makes it possible to reuse the contingency table of some test ¢ over any
triplet involving variables {X,Y } UZ stored in the cache, not only in the trivial
case when ¢ has to be performed again, but (through an efficient computation)
in any other test ¢ whose set of variables {X’, Y’} UZ’ is a subset of the vari-
ables in ¢, i.e.,, {X,Y'}UZ' C {X,Y}UZ . Since the number of subsets of a
set grows exponentially with the size of the set, the tables of one test in the
cache has the potential of being reusable for an exponential number of other
tests. In practical scenarios, however, it may be the case that not all these expo-
nentially many tests must be performed. In our experiments (c.f. §3) we present
results for one possible practical scenario: algorithms for learning probabilistic
graphical models from data (more in Section 1.1). The experimental results show
savings of more than 95% in the time spent constructing contingency tables, and
above 80% savings overall. Although inspired by, and designed for the problem
of learning graphical models, the speed up approach presented is general and can
be applied in principle in any other situation requiring massive computations of
statistical independence tests. The authors, unfortunately, are unaware of such
other situations at the time of this writing.

The rest of the paper is organized as follows. In the next two subsections 1.1
and 1.2, we discuss some preliminaries, including: Probabilistic graphical models,
as well as details on the workings of contingency tables. Section 2 explains in
detail our approach, including the two main procedures for constructing tables
of some test from the tables of other tests: sub-conditioning and pivoting. Then,
in Section 3 we present the results of our experiments. We conclude with a
summary of our work and possible directions of future works in Section 4.

1.1 Probabilistic graphical models

In this section we present Probabilistic graphical models, the practical scenario
chosen for evaluating the actual speed ups reached by using the cache of tests.
Probabilistic graphical models provide a general purpose modeling scheme for



exploiting conditional independences among random variables of high dimen-
sional probability distributions. Explicit encoding of these independencies allow
a compact representation of the distribution, resulting in sometimes exponen-
tial reductions in the space complexity of storing the distribution in memory, in
the time complexity of inference computations performed over the distribution
(i.e., the computation of conditional, marginal or joint probabilities of interest),
and the sample complexity of the data required for learning the distribution.
A graphical model for a domain over set V of random variables is presented
in terms of a graph and a set of numerical parameters. The graph, also com-
monly known as independence structure (or simply structure), contains [V| =n
nodes, each representing a random variable, and the edges between the nodes
encodes statistical dependencies/independencies among the variables. The nu-
merical parameters are tables of real values that, together with the graph, result
in a well-formed probabilistic model. Markov networks (MNs) are a type of
graphical models that use an undirected graph for its representation of depen-
dencies (see [12] for more details). Other type of graphical models are the well
known Bayesian networks (BNs), that use a directed acyclic graph for repre-
senting the dependencies. MNs can represent certain probability distributions
that BNs cannot, and vice versa. Learning graphical models thus consist in first
learning its independence structure and, given the structure, learn its numerical
parameters. A general strategy for learning the structure of MNs and BNs are
independence-based algorithms [14, 2, 5, 11]. These algorithms discover the inde-
pendence structure by taking a quite natural approach: they execute a sequence
of independence tests and use the outcome of those tests, that is, independence
statements about the variables of the domain, to infer the structure. An impor-
tant advantage of these algorithms is that they can converge efficiently to the
structure. When the outcomes of the independence tests are fully reliable, i.e.,
tests always decides correctly on the dependence or independence of variables,
these algorithms not only converges efficiently, reaching time complexity in the
order of O(n?) tests, but it can be formally demonstrated that they converge to
the correct structure.

In contrast, when tests are not reliable, the structures obtained may be incor-
rect. In practice, for statistical tests to be reliable they require a number of data
points exponential in the number of variables involved in the test. To address
this shortcoming, several novel independence-based algorithms were proposed
recently that increase the quality of the output structures, at the expense of
larger running times. These algorithms improve the quality of their outcomes by
correcting errors in the independencies asserted by statistical independence tests.
To correct the outcome of some independence test, these algorithms execute ex-
tra tests over sets of variables related to the variables in the test of interest (thus
the increase in runtime). With the outcomes of these tests they correct errors
in the test of interest by resolving constrains — Pearl’s axioms of independence
[12] — that must be satisfied between the independence/dependence asserted by
the test, and independence/dependence asserted by the extra tests. If these in-
dependence assertions do not satisfy the constrain, one of them must be wrong



(and can thus be easily corrected by flipping its independence value). Different
approaches are taken to decide which of them is wrong. One such approach is
presented in [4], which proposes the use of a knowledge base of independence
facts that are related through Pearl’s axioms. Errors in the independence as-
sertions of statistical tests may result in inconsistencies in the knowledge base.
The algorithm then proposes the use of the argumentation framework [3, 9]
for inferring independencies/dependencies in this inconsistent knowledge base.
Another, more recent example of an algorithm that uses such approach is pre-
sented in [6, 13, 7]. This algorithm takes a Bayesian approach, maintaining a
posterior probability over possible structures by relaxing the outcome of tests
to probabilistic outcomes, namely, posterior probabilities of the variables being
independent or dependent given the data. Learning the structure thus reduces
to finding the mazimum a posteriori, that is, the most probable independences
structure given the data. The important result is the introduction of an efficient
procedure for computing the posterior probability, which is based on the poste-
rior probabilities of independencies. This is achieved through Margaritis’ test of
independence [10, 11], also known as the Bayesian test.

The above algorithms are effective in producing better quality outputs (i.e.,
closer to the true underlying structure), but at the expense of performing a
massively larger number of tests, with important increases in running time. All
these tests, however, are performed over different subsets of the same set of
variables, i.e., the variables in the domain. Many of these tests have a chance of
being subsets of each other, thus reusable from the cache. Experimental results
presenting the savings obtained are reported in detail in the experimental section
(c.f. §3). Before that, let us first describe in detail contingency tables, and how
is that they can be reused for tests involving subsets of variables.

1.2 Contingency Tables

We discuss now in detail how the tables of some test are constructed from an
input dataset, and then, in the next section, how contingency tables stored in
the cache can be reused to compute efficiently the tables of other tests.

In this work we assume a domain V of discrete random variables, denoted
with capital letters, e.g. V. = {U,V,W, XY, Z}. A dataset D is a sample of
complete configurations of V given in tabular form, with one column per random
variable, and each of the N rows containing the outcome of a random experiment.
Each cell at the i-th column contains the value sampled in the experiment for
the i-th random variable. An example dataset with N = 7 rows, for n = 4 binary
random variables {X,Y, U, V'} is shown in Fig. 1 (a).

A contingency table of variables (X,Y") for some dataset D is a double-entry
table used for analyzing the unconditional independence between X and Y in the
probability distribution of which D is a sample. Its number of rows and columns
is | X| and |Y|, respectively, where | X | = |dom(X)], |Y| = |dom(Y)| and dom(X),
dom(Y") are the domains of X and Y. A cell (z,y), z € dom(X),y € dom(Y),
represents the number of datapoints in D in which X = z and Y = y. Figure 1(b)
exemplifies the table for X and Y, computed from the dataset of Fig. 1 (a). So



Y Y Y U U

XY UV 01 01 01 01 01

0110 021 0|11 010 0|10 011

00O0O OY1 XlOl X100X101 X100X101

0100 022 U=0 U=0,V=0 U=0,V=1 Y=0,V=0 Y=1,V=0
1110 X112 Y

0001 01 01 01 01 01

1011 0 0[0 1 0[0 1 0[00 010 0[00

1101 Xlll X101X110 X101X110

U=1 U=1,v=0 U=1,V=1 Y=0,Vv=1 Y=1,v=1

(a) (b) (c) (d) (e)

Fig. 1. (a) Example dataset D for binary random variables {X,Y, U, V'}, and example
(b) unconditional contingency table for triplet (X,Y | @), (c) for triplet (X,Y | {U}),
(d) triplet (X,Y | {U,V}), and (e) triplet (X, U | {Y,V}), all computed from D.

for instance, the top-right cell contains a value 2 because there are 2 rows in the
dataset (first and third rows) for which X =0 and ¥ = 1.

Conditional independence of a triplet t = (X,Y | Z), that is, between X and
Y given a conditioning set Z, is estimated using several contingency tables over
X and Y, one per configuration z of values of Z (a.k.a. slice). A cell (z,y) in a
slice z of t stores the count of datapoints d in D for which X = z, Y = y and
Z = z, denoted c, ,|,. Formally:

Coylz=Hd €D [ X =2 ANY =yANZ =z} (1)

The number of slices 0z of Z is therefore 0z = [],.5|Z]| slices. Although
this grows exponentially, in practice slices with empty tables in them (i.e., all its
counts equal to 0) are ignored. The upper bound in oz occurs when the tables
of each slices has one cell with a count of 1 and all other counts equal to 0. In
that case o0z = N slices. In summary, oz = max{N,[[,. |Z}.

Figure 1 (d) shows an example of the tables of triplet (X,Y | U, V). Since
U and V are binary variables, there are 2 x 2 = 4 slices, corresponding to all
possible configurations of {U, V'}.

The computation of the tables of a triplet ¢ = (X,Y | Z) from dataset D,
requires processing each of the NV rows in D. This processing involves reading
the value that each variable in ¢ takes in that row, a cost of 2 + |Z|. The total
cost of performing a test is therefore N(2+ |Z|), a value we call weighted cost of
the test. Once the conditioning tables are computed, a statistical test analyzes
them to decide on the independence or dependence. Due to space restrictions we
do not discuss in detail how the different tests perform these calculations. We do
however would like to stress that the computational cost of these calculations is
a constant time O(1) calculation per count, i.e., assuming the number of values
of each variable equals d, the time complexity is O(d?0z). In summary,

O(weighted cost + d*o0z) = O(N(2 4 |Z]) + d*0z). (2)

2 Owur Approach

We explain now our main contribution: the cache for contingency tables. First,
we explain the procedure for computing efficiently a contingency table from



the contingency tables of other triplets, avoiding the expensive computation of
constructing the tables by scanning the whole dataset. Then, we discuss how
this procedure can be make effective in a cache for tables.

2.1 Reusing Contingency Tables

We explain this procedure in two steps: sub-conditioning and pivoting. Sub-
conditioning computes the tables of a triplet ¢ = (X,Y | Z) from a super-
conditioning triplet ' = (X,Y | Z’) that satisfies Z C Z’. Pivoting computes
the tables of ¢ from a pivot triplet ¢ = (X', Y’ | Z’) that satisfies {X, Y} UZ =
{X",)Y'} UZ'. Tt is easy to see that by applying first a pivot and then a sub-
conditioning, the tables of a triplet ¢’ = (X', Y’ | Z’) can be reused to obtain
the tables of any other triplet ¢ = (X,Y | Z) whose set of variables is a subset of
the set of variables of ¢’ (with equality requiring only a pivot operation). We say
that t is a sub-triplet of ¢’ (and ' a super-triplet of t). We now proceed to explain
in detail the computations involved in sub-conditioning, and later, in Lemma 2,
we present the computation of pivoting.

Lemma 1 (Sub-conditioning). Let t = (X,Y | Z) and ¢’ = (X,Y | Z') with
Z C 7Z'. Then the counts stored in the tables of t can be computed by the counts
in the tables of t' as follows:

Cx,y|z = Z Cac,y\zUz“ . (3)

z''€slices(Z'—7Z)

The above expression means the counts ¢, |, at cells in the table of t are equal
to the sum of counts at cells (x,y) of all slices z' of Z' whose assignments for
those variables in Z' that are also in Z are those indicated by z.

Before proving the lemma, let us first illustrate the procedure through the
example shown in Fig. 1, where Z = {U}, whose tables are shown in part (c),
and Z' = {U,V'}, whose tables are shown in part (d). Here, Z' — Z = {V'}, and
the sum in Eq. (3) goes over V =0 and V' = 1, and is thus summing the counts
Ca,ylzufv=0} and ¢z yzu{v=1}- For instance, the count cx_g y—o|{r=o} is shown
in the upper-left cell of slice {U = 0}, and equals 2. According to the equation, it
is equal to the sum of cx—_q y—o|{r=0jufv=0} stored in the upper-left cell of slice
{U =0,V = 0}, and equals 1; and cx—o y—o|{r=0ju{v=1}, stored in upper-left
cell of slice {U =0,V = 1}), and equals 1. These counts are not arbitrary, but
corresponds to the dataset of Fig. 1(a). Let us now prove the Lemma.

Proof. From Eq. (1), we have that
Coyza=HdeD | X =AY =y ANZ =2z}

and since V. regices(z)Z’ = 2" is always true (something must be assigned to
Z"), we can add it in the conditioning of the above equation without affecting
it. We do it for the special case of Z" = Z' — Z obtaining,

Cw,y|z = |{d eD | X=aNY = Yy NZ =z N (\/Z//eslices(zlfz)z/ —7Z = ZN)}}



Distributing A over V, and properties of sets, the above results in
Coyla = |Usresticesz—-z){d €D | X =aNY =yANZ=2zNZ —Z=12"}|

Noticing that because Z C Z’, ZU (Z' —Z) = Z'. Also that the cardinality of
the union equals the sum of the cardinalities. Therefore,

o= Y DX —en¥—yaZ —au)
z'"€slices(Z'—Z)

And finally, by the definition of counts in Eq. (1), the terms in the summation
are Cy y|zuz, Which proves the lemma. (|

The time complexity of sub-conditioning (X,Y | Z’) to (X,Y | Z) using
Eq. (3) is |slices(Z' — Z)| = 2/Z'|-1Z] times the complexity of retrieving the
counts in the summation. With 2D arrays for the table at each slice, and a hash-
table for the slices, both with O(1) for cost of retrieval, the cost for retrieving the
counts reduces to computing the key for the hash-table, which is |Z’|. Since there
are 2%l slices in (X,Y | Z), and |X||Y| counts per table, the total cost of sub-
conditioning all counts is (d?2/%!) <|Z’|2Z/_Z) = d2|2'|2%! | where we assume
all domains has the same number of values d. In practice, many of the slices in
Z' has 0 counts in all its cells, and thus are ignored. A more efficient algorithm
would not actually traverse all configurations of Z’ systematically, but would
instead traverse all non-empty slices, whose quantity was denoted by oz/, that
is, Z' into Z is O(d?|Z’|oz/). Let’s discuss now the lemma that defines pivoting:

Lemma 2 (Pivot). Given two triplets t = (X,Y | Z) and t' = (X', Y’ | Z')
such that {X, Y} UZ = {X"\Y'}UZ', then, each cell (z',y') of slice z' in the
tables of t' holds the same count as cell (x,y) of slicez = 2" U{a',y'} — {z,y}
in the tables of t, i.e.,

Cayla'Ux!y b —{x,y} = Caty'|z - (4)

Before proving the lemma, let’s note that the lemma states that the count
in the tables of ¢/ (cell (a’,y") of slice z’) not only can be obtained from the
tables of ¢ (cell (z,y) of slice z' U {z,y} — {a’,y'} ), but each of them can be
obtained with a computational cost of only four set operations. Using an efficient
data structure for sets, such as a bitset with constant cost O(1) for adding and
removing members, the pivot between the tables of ¢ and those of ¢’ can be
performed in O(d?|Z'|o|z/|). The total running of computing a statistical test
when tables are computed from other tables, i.e., of sub-conditioning, pivoting,
and remaining calculations of the test, is O(d?|Z’|oz/), an important reduction
from O(N(2 + |Z|) + d?0z), the time complexity of a statistical test performed
on data, when oz, < N. Moreover, since the upper bound of oz is IV, the above
is always smaller than the cost of computing the test from data.

Let’s proceed with the proof now:



Proof. We start by noticing that the set of variables in the Lh.s. count of Eq. (4),
viz. {X,Y}UZ U{X"Y'} — {X,Y}, is equal to {X',Y'} UZ’. Therefore, by
Eq. (1), the counts on each side must be equal, i.e.,

Caylz’U{z’ y' }—{z,y} = ‘{d €D | TAYN z' U {xlvyl} U {xay}H
=HdeD|2'ny N7}

Cz’,y’\z' . O

The pivot operation is exemplified in Fig. 1 between triplet (X,Y | U, V) (d),
and triplet (X,U | Y, V) (e). Since the set of variables in each of them is the same,
{X,Y,U,V}, they are a pivot of each other. We can see for (X,U | Y, V), for
instance, that the count for cell X = 0,U = 0 (top-left) of slice {Y =0,V =0}
(first) is 1. According to Eq. (4), it should match the count for X = 0,Y =0
(top-left) of slice {Y =0, V=0U{X =0,U=0}-{X=0,Y=0} = {U=
0,V = 0} (first). As shown in the figure, it is in fact 1. Another example is
CX=1,U=0|{Y=0,Vv=1} = 0= CX=1,Yy=0/{U=0,V=1}"

2.2 Cache of contingency tables

The basic idea of the cache is quite simple. Whenever a test for a triplet t =
(X,Y | Z) must be done, a super-triplet ¢ = (X',Y' | Z'), {X, Y} UZ
{X", Y’} UZ is first looked-up in the cache. If it exists, its tables are reused by
first pivoting the tables of ¢’ into the tables of a triplet (X,Y | Z”), and then,
since Z C Z”, the tables of t are computed by sub-conditioning.

As discussed above, the runtime complexity of the sub-conditioning and piv-
oting of two triplets grows with the cardinality of the largest conditioning set Z’.
Thus, when looking for a super-triplet in the cache, we want the smallest one.
There is, however, no data-structure for sets with an efficient operation for find-
ing the smallest superset of some given set. We propose a simple data structure
that works well in practice. The cache is stored in a matrix of n x n cells (recall
n =| V |, the number of variables in the domain), with columns representing car-
dinalities and rows representing variables. If m =| {X}U{Y }UZ | is the amount
of variables in a triplet, its tables are stored in m cells, each with column m, and
the rows corresponding to its variables. Then, assuming an arbitrary but fixed
ordering of the variables, and denoting by ix the index of X in this ordering,
the tables of (X,Y | Z1, ..., Zy—2) would be stored in all cells (ix,m), (iy, m),
(iz,,m), ..., (iz, _,,m). To illustrate, consider a triplet (X,Y | {U,V}), and an
ordering [X,Y, Z,U,V,W]. Then, ix = 1, iy = 2, iy =4, iy = 5, and then the
tables would be stored in all cells (1,4), (2,4), (4,4), and (5,4). Note that more
than one triplet could be stored in the same cell. For instance, (X,U | W, Z)
would be stored in cells (1,4), (4,4), (6,4) and (3,4). For that reason, in each
cell, triplets and their tables are stored in a linked list. Because of the linked-list,
the data-structure just described could turn very inefficient if many triplets were
stored in the same position. In practice, however, we observed small linked-lists.
These values are not reported in this work.

N



To finalize, let’s illustrate how one can use the cache for retrieving the small-
est superset of {X,Y,V}. Tteratively, explore the columns (i.e., cardinalities)
starting from 3, the cardinality of the input set {X,Y,V}. By the definition of
our data structure, a superset of {X,Y,V}, if it exists in the cache, would be
stored in the lists of X, of Y, and of V. We then search the smallest one at each
column.

3 Experiments

In this section we report the results of applying the proposed optimization strate-
gies. For that, we compare the performance of different algorithms when they
run Bayesian tests directly on data, denoted below BT (for Bayesian test), and
when they run the Bayesian test but reusing tables from the cache, denoted BT™*.
For a fair comparison we also compare results of algorithms using a simple cache
of tests, denoted BT, that stores and retrieve tests using a hash table. As the
following results show, our main contribution not only produces improvements
over BT, but also over the more efficient BT'T.

The comparison in performance between the algorithms is reported through
two quantities: runtime, and weighted number of tests (WNT). The former is
simply the total time taken by the algorithm to conclude. The latter reports the
sum of weighted costs (see first term in Eq. (2)) of all tests executed (i.e., could
not be reused from the cache). WNT accounts for the savings of reading from
data, while runtime is also reporting the cost of deciding independences from
the tables (i.e., both terms of Eq. (2)).

We considered two types of experiments. First we report runtime improve-
ments of running a test over triplet ¢ directly on data, versus running the same
test but instead of data, it reuses tables stored in the cache, that is, when the
cache holds a super-triplet of t. Second, we report runtime and WNT improve-
ments of different runs of an independence-based algorithm called IBMAP-HC
(explained in more detail below). In both experiments, statistical independence
tests were performed over datasets sampled from known, randomly generated
MNs using a Gibbs sampler. MNs with n = 36 random variables were generated
by connecting each node randomly and uniformly with 7 = 2,4, 8 other nodes
in the network. One dataset was sampled for each value pair n and .

Figure 2 shows the results of our first experiment with several scatter plots.
The purpose of these experiments is to compare the savings in runtime of BT™*
(y-axis) vs BT (z-axis), i.e., the closer a point to the z-axis, larger is the im-
provement of BT* vs BT (the different shaded regions help in this comparison).
In this experiments we force that BT™* actually produces savings by adding, for
each triplet (X,Y | Z) tested, a super-triplet (X,Y | Z’) with x variables, i.e.,
k =2+ |Z'|, and Z C Z’. Since runtime of reusing tables depends on |Z’|, and
the cost of running a test depends on N, we considered x = {8,32} (first and
second rows, respectively) and N = {100, 1000, 10000} (first, second, and third
columns, respectively). For each pair (k, N) the experiment consisted in first
producing randomly a triplet (X,Y | Z’), with |Z’| = k, computing its tables,
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Fig. 2. Runtime comparisons of BT*
{100, 1K,10K} datapoints, and caches
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Fig. 3. Runtime and WNT of several hill-climbing searches for datasets with n = 20,
7 =2,4,8 (columns), N = 100, 800, 5K, 20K, 40K, using the tests BTT, BT™*.

and storing them in the cache. Then, for each ' < «, 100 triplets (X,Y | Z)
were generated randomly, with |Z| = k’|. BT and BT* were conducted on each
of those, reporting the mean value of the running time of each as a point in
the plot. The results show improvements of BT* w.r.t. BT in x = 8 and not in
k = 32, increasing with the value of N (i.e., they get closer to the z-axis). The
pour results of Kk = 32 are expected, as they require large number of sums to
generate the tables from tables with, in the worst case, max{N, 232} more slices.



The above experiments show improvements of BT™ vs BT when, for each test
performed, there is a super-triplet stored in the cache. In practice, however, such
super-triplet may not exist. As discussed in the introduction, we test this in our
second set of experiments, i.e., on the problem of learning probabilistic models
from data using the independence-based approach. In particular, we compared
the running time of the independence-based algorithm called IBMAP-HC, pre-
sented in [13, 7]. The algorithm performs a hill-climbing search for maximizing
a score of the structure, computed from the posteriors of several tests of in-
dependence using the Bayesian test (more details in the references). It starts
computing the score for an initial structure and the score of all its neighbors,
repeating this on the best neighbor until it arrives to a local maximum. To com-
pute the score, it performs 2 x (n — 1) statistical test on each neighbor, with
() = n(n — 1)/2 neighbors. BT itself may result in important improvements,
as many tests must be performed more than once. However, as the following
results show, BT* produces even further improvements over BTT. IBMAP-HC
has some flexibility in the ordering that some tests are performed. In our exper-
iments we took advantage of these flexibility and, whenever possible, a test with
larger number of variables was conducted before tests with less variables.

Figure 3 shows results for these experiments. Each of the 3 plots in the top
row show two super-imposed graphs, a bar graph and linepoints graph. The bar
graph plots the runtimes of BT, BT* (in that order) over increasing number
of datapoints, i.e., N = {100,800, 5000, 20000,40000}. The bars for BT were
too large, and thus, were omitted for improving the readability of the most
important comparison: BTT vs BT*. The linepoints graph plots the runtime

BT*

ratios r* = 1 — 7+ for assessing the saving obtained by BT™ over BTT, as well

as rf =1 — %:’; for assessing the saving obtained by BTT over BT, over the
same values of N, resulting in improvements when the ratio is greater than 0.
In other words, the ratio represents the savings. For instance, 7T = 0.8 reads as
80% savings in runtime. The bottom row shows equivalent plots but comparing
the WNT, and the WNT ratios over the same algorithms, in bar graphs and
linepoint graphs, respectively. In both runtimes and WNT, the columns show
the results for learning structures over datasets sampled from networks with
increasing connectivities 7 = {2,4,8}. In all cases the datasets where sampled
from networks with n = 20 variables.

The results show important improvements of our main contribution, the cache
over tables BT*, over both other cases (second bar vs. first bar, ', and r*). For
large datasets the improvements in runtime of BT* over BT are comparable to
the improvements BTt gained over BT (i.e., r1 = r2), reaching over 80% savings
in runtime for large enough datasets (with exception of 7 = 2), demonstrating
the practical effectiveness of our approach. A closer look shows that for small
datasets, N = 100,800, the BT™ test results in worst running times. This can
be easily explained by the fact the gain in runtime from BT to BT™* is in the
saving in reading the dataset. Therefore, for small enough datasets this gain may
be lost, as demonstrated by these results. This is corroborated by the results of
WNT, that show only the runtime involved in reading data. We can see that



savings of BT* vs BT' is over 95% for all Ns, reaching practically 100% for
7 = 8. The savings in running time for IBMAP-HC were up to 80% for datasets
above 40,000 datapoints.

4 Conclusions and future work

The main contribution of our paper include the efficient sub-conditioning and
pivoting operations, resulting in important improvements in the running time
of the execution of a large number of statistical tests. Our evaluation on data
from sampled networks shows that our methods perform well as the amount of
data increases. Moreover, there remain several possible extensions to the current
work for getting yet better results, stemming from the consideration of reusing
computation in the rest of the steps of the computation of independence tests.
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