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Facundo Bromberga,b

aUniversidad Tecnológica Nacional. Dpto. de Sistemas de la Información. Grupo de
Inteligencia Artificial DHARMa, Mendoza, Argentina.

bConsejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina.

Abstract

In Viticulture, visual inspection of the plant is a necessary task for measuring

relevant variables. In many cases, these visual inspections are susceptible to

automation through computer vision methods. Bud detection is one such visual

task, central for the measurement of important variables such as: measurement

of bud sunlight exposure, autonomous pruning, bud counting, type-of-bud clas-

sification, bud geometric characterization, internode length, bud area, and bud

development stage, among others. This paper presents a computer method for

grapevine bud detection based on a Fully Convolutional Networks MobileNet

architecture (FCN-MN). To validate its performance, this architecture was

compared in the detection task with a strong method for bud detection, the

scanning windows with patch classifier method, showing improvements over

three aspects of detection: segmentation, correspondence identification and lo-

calization. In its best version of configuration parameters, the present approach

showed a detection precision of 95.6%, a detection recall of 93.6%, a mean Dice

measure of 89.1% for correct detection (i.e., detections whose mask overlaps the

true bud), with small and nearby false alarms (i.e., detections not overlapping

the true bud) as shown by a mean pixel area of only 8% the area of a true

bud, and a distance (between mass centers) of 1.1 true bud diameters. We con-

clude by discussing how these results for FCN-MN would produce sufficiently

accurate measurements of variables bud number, bud area, and internode length,
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suggesting a good performance in a practical setup.

Keywords: Computer vision, Fully Convolutional Network, Grapevine bud

detection, Precision viticulture

1. Introduction1

The present work proposes a solution for the autonomous detection of grapevine2

buds within 2D vineyard images captured in natural field conditions. The pro-3

posed approach is based on Fully Convolutional Networks (Long et al., 2015;4

Shelhamer et al., 2017), a deep learning model specific for computer vision ap-5

plications. The present solution contributes to the historical quest for more and6

better quality information of different vineyard processes that affect both the7

grapevine productivity and grape quality.8

For years, viticulturists have been producing models of the most relevant9

plant processes for determining fruit quality and yield, soil profiling, or vine10

health, and have been gathering a wealth of information to feed into these11

models. Better and more efficient measuring procedures have resulted in more12

information, with its corresponding impact on the quality of model outcomes,13

while inspiring researchers to push the boundaries for producing more sophisti-14

cated models. Such information consists of a long list of variables for assessing15

different aspects of the trunks, leaves, berries, buds, shoots, flowers, bunches,16

canes, and other parts of the plant involved in these processes, e.g., berry ma-17

turity, number, weight, size and volume; bunch compactness, number, weight,18

and morphology, such as length, width, size, elongation, and volume; bud burst,19

number and size; flower number, leaf area and canopy density, shoot length,20

trunk ’s pruning weight, among many others (see a complete list in the manual21

published by The Australian Wine Research Institute (a,b)).22

Nowadays, technology is pushing once again the possibilities regarding the23

quality and throughput of these measurements with improved digital and au-24

tonomous measurement procedures over manual ones. The discipline is expe-25

riencing a transition with many of its variables still being measured manually26

through visual inspection. This results in high labor costs that limit measure-27

ment campaigns to only small data samples which, even with the use of statisti-28

cal inference or spatial interpolation techniques, limit outcome quality (Whelan29
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et al., 1996). In some cases, this scenario is exacerbated by the need of experts30

for proper measurement, such as the case of variables associated with the plant31

phenological stages, i.e., bud swelling, bud burst, inflorescence, flowering, verai-32

son, and berry ripening, among others (Lorenz et al., 1995); or by a measurement33

procedure that requires the destruction of the plant part being measured, which34

prevents tracking a certain variable over time. Such is the case of the mea-35

surement of leaf area, bunch weight, berry weight and pruning weight (Kliewer36

and Dokoozlian, 2005). Precision viticulture in general (Bramley, 2009), and37

computer vision algorithms in particular, have been growing in the last couple38

of decades, mainly due to their potential for mitigating these limitations (Seng39

et al., 2018; Matese and Di Gennaro, 2015). These algorithms come along with40

the promise of an unprecedented boost in the production of vineyard informa-41

tion as well as many expectations not only about possible improvements in the42

quality of the model’s outcomes, but in its potential to produce better models43

by feeding all this information to big data algorithms.44

The present work contributes to this general endeavor with FCN-MN 1,45

an algorithm for measuring variables related to one specific plant part: the46

bud, an organ of major importance as it is the growing point of the fruits,47

containing all the plant’s productive potential (May, 2000). Our contribution of48

autonomous bud detection not only enables the autonomous measurement of all49

bud-related variables currently measured by agronomists (see Table 1 for a non-50

exhaustive list of bud-related variables), but it also has the potential to enable51

the measurement of novel, yet important, variables that at present cannot be52

measured manually. One example is the total sunlight captured by buds, which53

depends on the unfeasible manual task of determining the exact location of54

buds in 3D space. Although the present work focuses on 2D detection, it could55

be easily upgraded to 3D by, for instance, integrating 2D detection into the56

1Both code and data have been made available online at https://github.com/

WencesVillegasMarset/DL4BudDetection. The shared repository includes both the corpus

of images used for training and testing, and runnable code for inspecting and visualizing

the complete set of results of our experiments, embedding the various models of the FCN-

MN detector in variable measurement systems, or re-training the FCN-MN on user provided

images.
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Variable (i) (ii) (iii)

Bud number x none

Bud area x x none

Type-of-bud classification x x plant structure (trunk and canes)

Bud development stage x x classifier over bud mask

Internode length (by bud detection) x x plant structure (trunk and canes)

Bud volume 3D reconstruction

Bud development monitoring x x x none

Incidence of sunlight on the bud x x 3D reconstruction, leaves 3D surface geometry

Table 1: A non-exhaustive list of important bud-related variables accompanied by an as-

sessment of the extent to which detection contributes to their measurement. The right-most

column indicates the information beyond detection necessary to complete the measurement,

while the middle columns labeled (i), (ii), and (iii) indicate the three aspects of detection

required: segmentation, correspondence identification, or localization, respectively.

workflow proposed by Dı́az et al. (2018).57

Table 1 shows a non-exhaustive list of the main bud-related variables cur-58

rently measured by vineyard managers (Sánchez and Dokoozlian, 2005; Noyce59

et al., 2016; Collins et al., 2020), together with an assessment of the extent60

to which detection contributes to their measurement. The right-most column61

indicates the information beyond detection, necessary to complete the measure-62

ment, while the middle columns labeled (i), (ii), and (iii) indicate the specific63

aspects of detection required for that variable: (i) whether it requires a good64

segmentation, i.e., the discrimination of which pixels in the scene correspond65

to buds and which correspond to non-bud; (ii) a good correspondence identifi-66

cation, i.e., discrimination of bud pixels as belonging to different buds; or (iii)67

a good localization, i.e., the localization of the bud within the scene. For in-68

stance, let us take the bud number variable. For the bud number to coincide69

with the detection count, different components detected for the same bud must70

be bundled together as a single detection. For the type-of-bud classification,71

in addition to correctly identifying components with buds, the segmentation of72

the part of the image corresponding to the bud must minimize the noise pro-73

duced by background pixels. Lastly, to measure the incidence of sunlight on the74

bud, localization rather than segmentation is necessary, plus the leaf 3D surface75

geometry.76

A good detector, therefore, should be evaluated on all three aspects of seg-77
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mentation, correspondence identification and localization. This is easy for our78

detector as its implementation first produces a segmentation mask, which is79

then post-processed to produce correspondence identification and localization.80

The specific aspects of this approach are detailed in Section 2. The analysis of81

detection results presented in Section 3 shows that this approach is superior to82

state-of-the-art algorithms for grapevine bud detection. Finally, Section 4 dis-83

cusses the scope, limitations of the results obtained for bud detection, sufficiency84

of the performance achieved for the measurement of a selection of variables in85

Table 3, as well as the most important conclusions, future work and potential86

improvements.87

1.1. Related work88

A wide variety of research using computer vision and machine learning algo-89

rithms to acquire information about vineyards (Seng et al., 2018) can be found90

in the literature, such as berry and bunch detection (Nuske et al., 2011), fruit91

size and weight estimation (Tardaguila et al., 2012), leaf area indices and yield92

estimation (Diago et al., 2012), plant phenotyping (Herzog et al., 2014a,b), au-93

tonomous selective spraying (Berenstein et al., 2010), and more (Tardáguila94

et al., 2012; Whalley and Shanmuganathan, 2013). Among the outstanding95

computer algorithms in recent years, artificial neural networks have aroused96

great interest in the industry as a means to carry out various visual recogni-97

tion tasks (Hirano et al., 2006; Kahng et al., 2017; Tilgner et al., 2019). In98

particular, Convolutional Neural Networks (CNN) have become the dominant99

machine learning approach to visual object recognition (Ning et al., 2017). Two100

recent studies have successfully applied visual recognition techniques based on101

deep learning networks to identify viticultural variables to estimate production102

in vineyards. One of them, Grimm et al. (2019), uses an FCN to carry out103

segmentation of grapevine plant organs such as young shoots, pedicels, flowers104

or grapes. The other, Rudolph et al. (2018), uses images of grapevines under105

field conditions that are segmented using a CNN to detect inflorescences as re-106

gions of interest, and over these regions, the circle Hough Transform algorithm107

is applied to detect flowers.108

Several works aim at detecting and locating buds in different types of crops109

by means of autonomous visual recognition systems. For instance, Tarry et al.110
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(2014) presents an integrated system for chrysanthemum bud detection that can111

be used to automate labour intensive tasks in floriculture greenhouses. More112

recently, Zhao et al. (2018) presented a computer vision system used to identify113

the internodes and buds of stalk crops. To the best of our knowledge and re-114

search efforts, there are at least four works that specifically address the problem115

of bud detection in the grapevine by using autonomous visual recognition sys-116

tems. The research work by Xu et al. (2014), Herzog et al. (2014b) and Pérez117

et al. (2017) apply different techniques to perform 2D image detection involving118

different computer and machine learning algorithms. In addition, Dı́az et al.119

(2018) introduces a workflow to localize buds in 3D space. The most relevant120

details of each are presented below.121

Xu et al. (2014)’s study presents a bud detection algorithm using indoor122

captured RGB images and controlled lighting and background conditions specif-123

ically to establish a groundwork for an autonomous pruning system in winter.124

The authors apply a threshold filter to discriminate the background of the plant125

skeleton, resulting in a binary image. They assume that the shape of buds re-126

sembles corners and apply the Harris corner detector algorithm over the binary127

image to detect them. This process obtains a recall of 0.702, i.e., 70.2% of the128

buds were detected.129

Herzog et al. (2014b)’s work presents three methods for the detection of buds130

in very advanced stages of development when the buds have already burst and131

the first leaves are emerging. All methods are semi-automatic and require human132

intervention to validate the quality of the results. The best result is obtained133

using an RGB image with an artificial black background and corresponds to a134

recall of 94%. The authors argue that this recall is enough to solve the problem135

of phenotyping vines. They also argue that these good results can be explained136

by the particular green color and the morphology of the already sprouting buds137

of approximately 2cm.138

Pérez et al. (2017) outlines an approach for the classification of bud images139

in winter, using SVM as a classifier and Bag of Features to compute visual140

descriptors. They report a recall of over 90% and an accuracy of 86% when141

sorting images containing at least 60% of a bud and a ratio of 20-80% of bud142

vs. non-bud pixels. They argue that this classifier can be used in algorithms for143
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2D localization of the sliding windows type due to its robustness to variation in144

window size and position. It is precisely this idea that has been reproduced in145

the present work to implement the baseline competitor to our approach.146

Finally, Dı́az et al. (2018) introduces a workflow for the localization of buds147

in 3D space. The workflow consists of five steps. The first one reconstructs a 3D148

point cloud corresponding to the grapevine structure from several RGB images.149

The second step applies a 2D detection method using the sliding window and150

patch classification technique of Pérez et al. (2017). The next step uses a voting151

scheme to classify each point in the cloud as a bud or non-bud. The fourth step152

applies the DBSCAN clustering algorithm to group points in the cloud that153

correspond to a bud. Finally, in the fifth step, the localization is performed,154

obtaining the center of mass coordinates of each 3D point cluster. They report155

a recall of 45% and a precison of 100% and a localization error of approximately156

1.5cm, or 3 bud diameters.157

Although these research studies represent a great advance in relation to the158

problem of detecting and localizing buds, they still show at least one of the159

following limitations: (i) use of artificial background outdoors; (ii) controlled160

lighting indoors; (iii) need for user interaction; (iv) bud detection in very ad-161

vanced stages of development; (v) low bud detection/classification recall, and162

(vi) although some of these works perform some kind of segmentation process as163

part of the approach, none of them aim to segment the bud or report metrics of164

the quality of the segmentation performed. These limitations represent a major165

barrier to the effective development of tools for measuring bud-related variables.166

2. Materials and Methods167

This section describes the main contribution of the present work, the deep168

learning setup FCN-MN for 2D image detection of grapevine buds captured in169

natural conditions. including in Subsection 2.1 details on the encoder-decoder170

transfer learning architecture. Also, in Subsection 2.2 we explain the specifics171

of our implementation of SW, the scanning windows and patch classification172

approach selected as the strongest competitor for FCN-MN, not only regarding173

the original workflow of Pérez et al. (2017) for the classification of the patches,174

but our specific proposal for bud detection based on the scanning windows175
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technique. The section concludes with Subsection 2.3 that provides details on176

the training configuration of both methods, and the image collection used for177

both of these trainings.178

2.1. Fully Convolutional Network with MobileNet (FCN-MN)179

As outlined in the introduction, the approach proposes the use of computer180

vision algorithms to: (i) segment buds by classifying which pixels in the scene181

correspond to buds and which correspond to background (non-buds), (ii) identify182

bud correspondences by discriminating those pixels that belong to different buds183

in the observed scene, and (iii) localize each bud in the scene.184

For the segmentation operation, i.e., pixel classification, the fully convolu-185

tional network introduced in (Long et al., 2015) is taken as a basis and trained186

for the specific problem of grapevine bud segmentation. The following section187

2.1.1 describes in detail the architecture considered for these networks. The re-188

sulting fully convolutional network returns a probability map on the same scale189

as the original image, where the value of one pixel represents the probability190

that the corresponding pixel in the input image belongs to a bud. To obtain a191

binary mask, a classification threshold τ is applied to each pixel, classifying the192

pixel as bud (non-bud) if its probability is higher (lower) than τ . To identify bud193

correspondences, post-processing of this binary mask is performed to determine194

that two bud pixels correspond to the same bud, as long as they belong to the195

same connected component, i.e., joined by some sequence of contiguous bud pix-196

els. Finally, there are several alternatives for the localization of objects among197

which are bounding box, pixel-wise segmentation, contour and center of mass198

of the object (Lampert et al., 2008). In this work the last one was considered,199

choosing to localize buds by the center of mass of the connected component.200

2.1.1. Encoder-decoder architecture201

For the pixel classifier, the three versions –32s, 16s and 8s– of the fully con-202

volutional networks originally introduced by Long et al. (2015) were considered,203

mainly due to their promising results in many image segmentation applications204

(Litjens et al., 2017; Garcia-Garcia et al., 2018; Kaymak and Uçar, 2019). These205

networks have characteristic architectures with two distinct parts: encoder and206

decoder (see Figure 1).207
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Figure 1: Diagram of the FCN-MN network architecture proposed in this work, based on

the fully convolutional network proposed by Shelhamer et al. (2017), replacing its feature

extraction encoder with the MobileNet network Howard et al. (2017), which produces feature

maps with a downsampling factor of n. As a decoder for the production of the segmentation

map, the SkipNet network Siam et al. (2018) is used, implementing variants 32s, 16s and 8s.

The encoder consists of a convolutional neural network that performs a down-208

sampling of an input image into a feature set, by means of convolution operations209

to produce a set of feature maps, i.e., an abstract representation of the image210

that captures semantic and contextual information, but discards fine-grained211

spatial information. These operations reduce the spatial dimensions of the im-212

age as one goes deeper into the network, resulting in feature maps 1/n the size213

of the input image, where n is the downsampling factor. The decoder is an214

upsampling subnet, which takes the low-resolution feature map and projects it215

back into pixel space, increasing the resolution to produce a segmentation mask216

(or dense pixel classification) with the same dimensions as the input image.217

This operation is implemented as a network of transposed convolutions with218

trainable parameters, also known as upsampling convolutions (Shelhamer et al.,219

2017).220

To refine the segmentation quality, connections that go beyond at least one221

layer of the network, called skip connections, are often used to transfer local222

spatial information from the internal encoder layers directly to the decoder. In223

general, these connections improve segmentation results, since they mitigate the224

loss of spatial information by allowing the decoder to incorporate information225

from internal feature maps. Their impact may vary depending on the proposed226

skip architecture. In Long et al. (2015), three skip architectures are proposed:227

32s without information from internal encoder layers; 16s that adds spatial228

information from deep encoder layers; and 8s that adds spatial information from229
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deep and less deep encoder layers. The details of these architectures are beyond230

the scope of this paper, but can be found in Long et al. (2015) and Shelhamer231

et al. (2017). Since the results reported in the literature are not conclusive232

regarding which architecture is better, in this work all three alternatives are233

considered.234

In spite of having achieved excellent results in practice, these architectures235

carry a significant load of computational resources. With this in mind, in this236

work the VGG encoder of Simonyan and Zisserman (2015), originally proposed237

by Long for fully convolutional networks, was replaced by the MobileNet net-238

work of Howard et al. (2017). This network stands out for having only 4.2239

million parameters against the 138 million parameters of VGG, allowing the240

training and testing process to be considerably faster, with a much lower mem-241

ory requirement, while maintaining performance. It is due to these changes that242

for the rest of the paper these networks are referred to as FCN-MN. The use243

of MobileNet as an encoder in the fully convolutional networks of Long et al.244

(2015) is not new, but had already been proposed for the 8s architecture by245

Siam et al. (2018) in his SkipNet architecture. Technically, Siam et al. (2018)’s246

proposal is extremely simple; motivating us to extend it to the 16s and 32s247

architectures originally proposed by (Long et al., 2015).248

2.2. Sliding Windows detector249

This section describes the approach proposed by Pérez et al. (2017) for the250

classification of bud images and our implementation for detection based on the251

sliding windows described in the original paper, denoted hereon by SW. The252

approach follows three steps: (i) it applies the sliding windows algorithm to an253

image to extract patches (sub-images or rectangular regions); (ii) it classifies (all254

pixels of) each patch into either bud or non-bud, using the algorithm presented255

in Pérez et al. (2017); and (iii) it produces the final segmentation mask using a256

voting scheme. Details of each step are provided below.257

Sliding windows techniques comprise a family of algorithms widely used in258

the past as part of various approaches to object localization with bounding259

boxes (Divvala et al., 2009; Wang et al., 2009; Chum and Zisserman, 2007;260

Ferrari et al., 2007; Dalal and Triggs, 2005; Rowley et al., 1996). In these261

algorithms, each image is scanned densely from one end of the image (e.g. upper262
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left corner) to the other end (e.g. lower right corner) by a rectangular sliding263

window in different scales and different displacements, extracting sub-images or264

patches from the original image. In this work, 10 window sizes of equal height265

and width are defined, namely 100, 200, 300, 400, 500, 600, 700, 800, 900 and266

1000 pixels, with a horizontal displacement of 50% the width of the window267

and a vertical displacement of 50% the height of the window, resulting in a268

50% overlap between both horizontally and vertically contiguous patches. As a269

result, each pixel of the image simultaneously belongs to 4 patches. These values270

were chosen on the basis of the robustness analysis of the classifier presented271

by Pérez et al. (2017) for the window geometry. This analysis shows that the272

classifier is robust for patches that contain at least 60% of the pixels of a bud,273

and whose area is composed of at least 20% bud pixels. If we consider extreme274

cases, i.e., the smallest bud diameter of 100px and the largest of 1600px, window275

sizes of 100px and 1000px could contain at least 60% of the pixels of a bud. In276

addition, using a 50% displacement, it is guaranteed that at least one patch will277

contain more than 20% bud pixels, 50px and 500px, respectively. The authors278

argue that a sliding window detection algorithm could easily propose a scheme279

for choosing window size and displacement to ensure that at some point in the280

scan the window meets the robustness requirements. However, no details are281

given on how to implement it, so in this paper we only report results for fixed282

window sizes and 50% displacement. Since the collection of buds have a variable283

diameter, not all window sizes will be able to satisfy the robustness requirements284

for all patches, but the results can still be useful to make a comparison with the285

FCN-MN approach.286

The second step in this approach is to determine whether a patch is a bud or287

non-bud type. The classifier in Pérez et al. (2017) takes the patches produced by288

the sliding windows and, for each patch, it performs the following operations: (i)289

it computes low-level visual features using the Scale Invariant Feature Transform290

or SIFT algorithm (Lowe, 2004); (ii) it builds a high-level descriptor for each291

patch using the Bag of Features or BoF algorithm of Csurka et al. (2004) over292

the SIFT features from the previous step; and (iii) it determines the class of293

each patch using the BoF descriptor as input to a classifier built using the294

Support Vectors Machine algorithm (Vapnik, 2013). Details of the training of295
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this classifier are in Section 2.3.3.296

Finally, the third step of the approach builds the binary mask of bud pixels.297

The mask is constructed through a voting scheme where each pixel gets one298

vote for each patch classified as a bud that contains it, where the maximum of299

votes is 4 given that 4 is the number of patches a pixel belongs to. A pixel is300

then added to the positive (bud) mask if it gets more than ν votes, where ν is301

a user given configuration parameter.302

2.3. Model training303

This section provides details of the training process for each approach. In304

order to contrast both approaches they have been designed to receive the same305

type of input, i.e., an image of a viticultural scene, and to produce the same306

outputs, i.e., a binary mask of the same size as the original image whose positive307

pixels represent bud-type pixels. This allows both to be trained with the same308

image collection, which is described in the following section, followed by model-309

specific training details.310

2.3.1. Image collection311

The image collection used in this study is the same collection originally used312

in Pérez et al. (2017), which has been downloaded from http://dharma.frm.313

utn.edu.ar/vise/bc as indicated by the authors. The complete collection con-314

sists of 760 images captured in winter in natural field conditions. However, in315

this work, only the 698 images containing exactly one bud were taken. Each316

image is accompanied by the ground truth, that is, a mask of the manual seg-317

mentation of the bud. These images and their masks were used during the318

training and evaluation of the detection models. For this purpose, the image319

collection was separated into two disjoint subsets: the train set with 80% of the320

images and the test set with the remaining 20%. This resulted in a train set321

of 558 images and a test set of 140 images, both with their respective ground322

truth masks.323

2.3.2. FCN-MN training324

The 558 images reserved for this purpose were used to train this approach.325

These images have different resolutions; however, the three proposed FCN-MNs326
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require a fixed size entry. Therefore, all images (including their masks) were327

scaled to a resolution of 1024×1024 pixels using a bilinear interpolation method328

(Han, 2013). In addition, for the train set images, the pixel RGB intensity values329

were scaled from [0; 255] to [-1; 1].330

Given the small number of images in the train set, two techniques widely used331

in practice were employed to achieve robust training: transfer learning (Pan and332

Yang, 2009) and data augmentation (Shorten and Khoshgoftaar, 2019). The333

transfer learning process was carried out as follows: (i) the original MobileNet334

network proposed by Howard et al. (2017) was implemented; (ii) the network was335

initialized with the parameters pre-trained on the ImageNet benchmark dataset336

(Kornblith et al., 2019); (iii) the MobileNet multi-class classification layer was337

replaced by a binary classification layer; (iv) the network was trained as a bud338

and non-bud patch classifier in an analogous way to SVM training using the339

same balanced patch train set used for training SW, after scaling all its images340

to 224× 224 pixels; and (v) the parameters obtained in the previous step were341

used to initialize the encoder of our FCN-MN. The data augmentation process342

was applied on the fly during training, meaning that at each iteration the trainer343

receives one transformed version of the original image obtained by applying the344

following seven operations to the original image over parameter values chosen345

at random with uniform probability: rotation of up to 45◦; horizontal shifting346

of up to 40%; vertical shifting of up to 40%; shear of up to 10%; Zoom of up347

to 30%; horizontal flip and vertical flip. Given that there are 200 epochs, the348

trainer is presented with 200 transformed versions of each image in the corpus,349

equivalent to one large dataset of 111600 images.350

For the training of the three FCN-MN variants –8s, 16s, and 32s– it is351

required to specify the optimization method and dropout value, two parameters352

typically defined by the user. In this work, the optimization methods considered353

were: Adam with learning rate 0.001, beta1 = 0.9 and beta2 = 0.999; RMSProp354

with learning rate 0.001 and ρ = 0.9; and Stochastic Gradient Descent with355

learning rate 0.0001 and momentum = 0.9. For the dropout case, two values356

were considered: 0.5 and 0.001. These values were pre-selected by preliminary357

experiments not discussed here.358

The best combination of optimization method and dropout was determined359
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Mean IoU

Optimizer Dropout = 0.001 Dropout = 0.5

RMSprop 0.44253 0.3117

Adam 0.240277 0.315714

SGD 0.000886 0.00151

Table 2: For each combination of optimizer and dropout values the simple mean is reported

between 12 IoU corresponding to the 3 variants considered in each of the 4 folds.

in training time over a validation set, using the 4-fold cross validation approach360

by 60 epochs and batchsize equal to 4, varying over the three optimization361

methods and the two dropout values. The values selected were those that max-362

imize the mean of Jaccard’s Intersection-over-Union (IoU) (Jaccard, 1912), a363

typical assessment measure in segmentation problems. For each combination of364

optimizer and dropout values the simple mean is reported over 12 IoU corre-365

sponding to the 3 variants considered in each of the 4 folds. It can be observed366

in Table 2 that the combination of parameters with which the highest average367

IoU is reached is RMSProp with a dropout of 0.001. Using these parameters,368

the 8s, 16s, and 32s architectures were trained over 200 epochs and batch size369

of 4.370

2.3.3. SW approach training371

The training for this approach is conducted in the same way as for the372

original workflow proposed in Pérez et al. (2017). This involves training a373

binary classifier to learn the concept of bud versus non-bud from a collection of374

rectangular patches that may or may not contain a bud. During the training,375

bud patches must be regions that perfectly circumscribe the bud while non-376

bud patches must be regions that contain not a single bud pixel (see Figure 2).377

Therefore, to build the patch collection, the 558 images and their masks were378

processed following the same protocol as in Pérez et al. (2017), obtaining a total379

of 558 patches circumscribing each bud (one per image), and more than 25000380

non-bud patches (the non-bud area is much larger than the area occupied by381

a bud in the image). The size of these patches is variable, with resolutions382

between 0.1 and 2.6 megapixels for the 100× 100 to 1600× 1600 pixels patches.383
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Figure 2: Collection of patches used in this work. The first and second rows correspond to

bud patches and non-bud patches, respectively. Image extracted from Pérez et al. (2017).

From this collection of patches, a balanced patch train set was created, with384

558 patches for each class, where non-bud patches were taken at random from385

the collection of 25000 background patches. The training was performed as386

detailed in the pipeline proposed by Pérez et al. (2017): (i) all SIFT descriptors387

were extracted from the train set; (ii) BoF was applied with a vocabulary size388

equal to 25; and (iii) the SVM classifier was trained on the BoF descriptors of389

each patch using a Radial Basis Function kernel, where the value of the γ and390

C parameters was established by means of a 5-fold cross-validation on the same391

value ranges: γ = {2−14, 2−13, . . . , 2−7} and C = {25, 26, . . . , 214}.392

3. Experimental results393

In this section we present a systematic evaluation of the quality of our pro-394

posed FCN-MN procedure for bud detection. According to the discussion in395

the introduction, detection can be decomposed into the three aspects segmen-396

tation, correspondence identification, and localization that affect the relevant397

bud-related variables listed in Table 1.398

First, in the following subsection, we present metrics that quantify the qual-399

ity of these aspects, followed by subsection 3 that presents the results for the400

metric values obtained for different experiments over the image test set.401
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3.1. Performance metrics402

3.1.1. Correspondence identification metrics403

Detection of buds is the result of two steps: (i) thresholding of the output404

masks into a binary mask. For FCN-MN this is done by keeping all pixels of the405

probabilistic mask with values higher than τ , and for SW this is done keeping406

all pixels that belong to at least ν positive patches, and (ii) considering each407

connected component of the binary mask as exactly one detected bud.408

The correspondence identification metrics measure in what amount these409

detections are correct or incorrect, by first corresponding detections with true410

buds whenever the detected and true masks overlap on at least one pixel. The411

best case scenario occurs when each detected bud overlaps exactly one true412

bud. In some cases this correct detection could be splitted with more than413

one detected component overlapping the same true bud. But still it is clear to414

which true bud these components correspond to. For images with more than one415

true bud, the correspondence identification may become unclear when it occurs416

that a single detected component overlaps more than one true bud, resulting417

in the large amount of possible detection metrics defined in Oguz et al. (2017).418

To simplify the analysis, our image collection contains a single bud per image,419

resulting in the following simplified list of possible metrics:420

� Correct Detection (CD) are true positive cases where there is exactly421

one component per image overlapping the true bud. Here, CD counts all422

images satisfying this condition.423

� Split (S) are true positives as well, but with more than one component424

overlapping some true buds. We report it separately to assess the problem425

of double counting. Here S counts the number of true buds for which this426

occurs, which in our case of one true bud per image, corresponds to the427

number of images for which this occurs.428

� False Alarm (FA) is equivalent to a false positive situation and corre-429

sponds to detected connected components not overlapping the true bud.430

This measure counts the total number of such components over all images.431

� Detection Failure (DF ) is equivalent to a false negative situation when432
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the detection mask presents no connected components. It counts one for433

each image that satisfies this condition.434

To quantify the correspondence identification quality one could simply report435

these quantities counted over the test set, with the best case consisting in a CD436

value equal to the cardinality of this set. However, determining the overall437

correspondence identification quality from the analysis of four quantities can438

become rather complicated.439

One alternative is reporting precision and recall, denoted as PD and RD,440

and referred to as detection-precision and detection-recall to distinguish them441

from the segmentation precision and recall defined further down. For that, the442

fact that there are two different true positive counts, CD and S, needs to be443

addressed first. This is solved by first counting as true positives not only the444

CD type of images, but also S, i.e., any image with either a correct detection445

or a split case is counted as one true positive, resulting in:446

PD =
true positives

true positives+ false positives
=

CD + S

CD + S + FA
,

RD =
true positives

true positives+ false negatives
=

CD + S

CD + S +DF
.

Then, the split type of errors is accounted for by explicitly reporting S.447

Given these quantities, we also report the F1-measure, denoted F1, com-448

puted as their harmonic average F1 = 2× PD×RD

PD+RD
.449

3.1.2. Segmentation metrics450

Correspondence identification metrics, although informative, relies on the451

overlap between detected and true buds, regardless of how minimal the over-452

lap is. This could miss several possible pixel-wise detection errors, resulting453

in rather coarse comparisons between competing detection algorithms. For in-454

stance, a correct detection could present a very small overlap with the true bud,455

with many or even a majority of the true bud pixels missing (i.e., several false456

negative pixels), or it could be erroneously reporting several pixels as bud pixels457
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(i.e., several false positive pixels). Clearly, the best case scenario would be a case458

of correct detection with no false negative or positive pixels that would visually459

correspond to a perfect overlap between the detected connected component and460

the true bud.461

A pixel-wise comparison of the masks could help to assess split quality as462

well. The best split, for instance, would be one completely enclosed within463

the true mask –i.e., with none of its connected components presenting false464

positive pixels–, while covering as much of the true bud mask as possible, i.e.,465

presenting just enough false negatives to disconnect its components. Finally, a466

false alarm case, presenting only false positive pixels, could be further assessed467

by the quantity of pixels in the component.468

The community has proposed several metrics to quantify segmentation er-469

rors. The most obvious ones are those that report the fraction of the whole470

image corresponding to true positive, false positive, and false negative pixels;471

denoted TPF , FPF , and FNF , respectively. Again, one can simplify the anal-472

ysis by considering pixel-wise precision and recall, denoted as PS and RS and473

referred to as segmentation precision, segmentation recall, defined formally as:474

PS = TPF/(TPF + FPF ),

RS = TPF/(TPF + FNF ),

and their weighted harmonic mean, the well-known F1-measure, defined for-475

mally as 2× PS ×RS/(PS +RS). The segmentation F1-measure has been pro-476

posed independently by Dice (1945); thus, usually referred to as the Dice mea-477

sure. A common alternative to the Dice measure is the Jaccard’s intersection-478

over-union (Jaccard, 1912) defined by TPF/(TPF + FPF + FNF ). In this479

work we report only the Dice measure, using the IoU only for model selection480

as explained in Section 2.3.2.481

One could refine these metrics by applying them, not to the whole mask, but482

to the individual correspondence identification cases; for instance, by reporting483

the mean Dice measured over all correctly detected components. Or else, by484

refining the assessment of how bad a split is, one could report the mean Dice485

measure to all components of some split or the mean Dice measure over all split486
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components of all split images.487

The case of false alarms is rather monotonous and not very informative with488

zero precision and recall for all such components. A pixel-wise assessment of489

the gravity of a false alarm requires a specific quantification of the number of490

false positive pixels. One could simply consider the FPF , the fraction of all491

the false positive image pixels. Instead, we considered a normalization against492

bud size to be more informative, resulting in the normalized area, denoted as493

NA and defined formally as the area of the component normalized by the area494

of the (single) true bud in the image, with a component’s area corresponding to495

its total number of pixels.496

3.1.3. Localization metrics497

As a localization metric we propose the normalized distance, denoted as ND,498

defined formally as the distance between the center of mass of the component499

and the center of mass of the true bud, divided by the diameter of the true bud.500

with the bud’s diameter corresponding to the maximum distance between any501

two border points of the true bud.502

3.2. Results503

We proceed now to assess the validity of our main hypothesis that FCN-MN504

is a better detector than its SW counterpart, over each of the metrics defined505

in the previous section.506

For a thorough comparison, several cases for each algorithm were considered:507

training 27 FCN-MN detectors and 40 SW detectors over the training set of 558508

images, one for each combination of their respective hyper-parameters. For509

FCN-MN, these hyper-parameters are the three architectures –8s, 16s, and 32s–510

and the 9 values {0.1, 0.2, . . . , 0.9} for the binarization threshold τ . For SW,511

in turn, these hyper-parameters are the 10 patch sizes {100, 200, . . . , 1000} and512

the 4 values {1, 2, 3, 4} of the voting threshold ν. Then, each of these 67 models513

were evaluated over the 140 images reserved for testing purposes, obtaining for514

each image the detection components.515

Table 3 shows the results for the best detectors of each algorithm, reporting516

all performance metrics of the three aspects of detection over all detected com-517

ponents over the 140 test images: correspondence identification, segmentation518
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and localization. The first column shows the label of the selected detectors, with519

the subscript indicating the architecture and patch size for the case of FCN-MN520

and SW, respectively; and the superscript indicating the thresholds τ and ν,521

respectively.522

The table includes all metrics defined in Section 3.1 required for a thor-523

ough comparison of FCN-MN against SW. First, four correspondence identifi-524

cation metrics are included: detection precision PD, detection recall RD, the525

F1-measure F1, and S the total count of test images with splitted detections.526

Then, we included seven segmentation metrics: the mean and standard devia-527

tion (in parenthesis) segmentation precision, segmentation recall, and the Dice528

measure over correct detections and splits, denoted in the table by PCD
S , RCD

S529

and DiceCD for correct detections and PS
S , RS

S and DiceS for splits; plus the530

mean and standard deviation of the normalized area for false alarms titled NA.531

Finally, the table reports the normalized distance ND of the false alarm compo-532

nents. We could consider here a separate report for the different correspondence533

identification classes. However, as they overlap the true bud, correctly detected534

and splitted components should be so close to the true bud that we found no535

need to present their values for all cases. Later below we report and discuss the536

minimum and maximum ND values obtained for each algorithm.537

The table is a summary, as it includes only a subset of all 27 FCN-MN cases538

and a subset of all 40 SW cases. A detector was considered for inclusion in the539

table if, when compared to its counterparts of the same algorithm, it resulted540

in the highest value for at least one of the metrics. The corresponding cell was541

marked in bold in the table. For instance, the detector FCN-MN0.8
16s has been542

included because its detection precision PD of 97.7% is the largest among the543

detection precision of all 27 FCN-MN detectors. Similarly, the detector SW1
1000544

has been included because its precision PD = 67.0% is the largest among all 40545

SW detectors.546

The table shows a clear improvement of FCN-MN over SW. For all metrics,547

the best FCN-MN detector (bolded) improves (or ties) over the best SW detec-548

tor (bolded) represented in the table by underlying the detector with the best549

metric. The exception is the two segmentation recalls RCD
S and RS

S for correct550

detections and splits, for which the SW case has a better (larger) mean, 98.8%551
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versus 99.9% for correct detections and 74.7% versus 78.6% for the split case;552

and the total split count S, with the best case for FCN-MN being 1 and 0 for553

the best SW case. These improvements are not statistically significant, however,554

due to the large standard deviations of the FCN-MN cases, of 3.4 and 8.1 for555

correct detections and splits, respectively, resulting in (statistically) overlapping556

values.557

In some cases, the improvements of FCN-MN over SW are overwhelming. For558

instance, for detection-precision PD, correctly detected segmentation-precision559

PCD
S , and split segmentation-precision PS

S , the FCN-MN over SW improve-560

ments are 97.7% versus 67.0%, 98.1% versus 46.5%, and 99.9% versus 67.5%,561

respectively. In addition, for the NA and ND (of false alarms), where a smaller562

value is better, the FCN-MN versus SW improvements are 0.04 versus 0.22 and563

1.1 versus 6.0, respectively.564

As mentioned, we omitted in the table the mean normalized distances for565

correct detections and splits, but for completeness let us present their minimum566

and maximum values. For each FCN-MN and SW detector we computed the567

resulting mean normalized distance over all correctly detected components in568

the test set, on one hand, and over all split components in the test set on the569

other. Among all FCN-MN detectors, the minimum and maximum mean are570

0.049(0.055) and 0.081(0.145), respectively. Similarly, the minimal and maximal571

pair for the splitted components is 0.261(0.179) and 0.429(0.066), respectively.572

As predicted, all rather small, with both the minimum and maximum mean573

distance falling within one diameter of a true bud, for all cases. For the SW574

detectors, the min/max pair of mean normalized distances for the correctly575

detected components is 0.383(0.2089)/1.352(1.43), and for splits components is576

0.329(0.206))/1.152(0.023), respectively. As can be observed, again FCN-MN577

shows an improvement over SW, with no statistically significant overlap of their578

min/max interval for the correct detections, and a minor statistically significant579

overlap for the splits (where the maximum value 0.429 + 0.066 for FCN-MN, is580

overlapping the minimum value 0.329− 0.206 of SW).581

3.2.1. Detailed analysis of correspondence identification metrics582

Graphically, one could expect a better combined analysis of detection-precision583

and detection-recall than could be obtained by comparing the F1-measure. This584
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Table 3: Correspondence identification, segmentation and localization metrics for the best

FCN-MN and SW detection models. Each column shows bolded cells corresponding to the

cell with the best metric among all FCN-MN rows and the cell with best metric among SW

rows, and underlined cells corresponding to the best among all combined models, i.e., the best

of the column. Columns PD, RD, F1 and S show results for the Correspondence identification

metrics detection precision, detection recall, F1-measure and number of images with splits,

respectively: Columns PCD
S , RCD

S and DiceCD (resp. PS
S , RS

S and DiceS) correspond to

the segmentation metrics mean segmentation precision, mean segmentation recall, and mean

Dice measure over all correctly detected components (resp. split components); and Columns

NA and ND show the mean NA and mean ND over all false alarm components.
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Figure 3: Precision-Recall scatterplots of the second and third columns of Table 3 discrim-

inating the results for FCN-MN and SW with black and white dots, respectively. Each dot

represents the detection-precision PD and detection-recall RD computed over all test images,

for some particular configurations of hyper-parameters among all models (27 for FCN-MN

and 40 for SW).

is shown as a scatter plot in Figure 3, a graphical representation of a non-585

summarized version of the second and third columns of Table 3. Each dot586

in the plot is located according to the detection-precision and detection-recall,587

and the color black or white, whether it corresponds to an FCN-MN or an SW588

detection model.589

The graph reinforces the clear and undisputed improvements of FCN-MN590

over SW already shown in the table, with similar detection-recalls, but larger591

detection-precisions over most scenarios.592

Detection-precision and detection-recall are computed over a combination of593

correctly detected and splitted components. To easily assess the impact of the594

split cases, Figure 4 shows the S values corresponding to the fifth column of595

a (non-summarized version of) Table 3 in the form of a histogram, with bins596

representing values of S and the bars for that bin representing the proportion of597

models that resulted in that value of S. Black and white bars discriminate the598
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Figure 4: Histogram reporting the distribution of S for FCN-MN and SW in black and white

bars, respectively. Each bar represents the proportion among all models (27 for FCN-MN and

40 for SW) that contains the number of splits indicated by the bin label. For instance, the

first (from left to right) white bar indicates that almost 62% out of the 40 SW models contains

between 0 and 5 splits.

cases for FCN-MN and SW, respectively. For instance, the first bin indicates599

that approximately 54% of the FCN-MN models and approximately 62% of the600

SW models resulted in a total number splits of less than 5. Overall, the FCN-MN601

distribution is slightly more concentrated in the lower number of splits than the602

SW distribution, but in general both algorithms compare fairly, with no clear603

contender when compared with the average number of splits they produce.604

3.2.2. Detailed analysis of segmentation metrics605

Figures 5a and 5b show scatter plots for segmentation-precision and segmentation-606

recall and for correct detection and split cases, respectively. These correspond607

to their respective columns of (a non-summarized version of) Table 3 with black608

and white dots representing the values of FCN-MN and SW detection mod-609

els, respectively. The position of each dot in the plot corresponds to the mean610

segmentation-precision and mean segmentation-recall over all images in the test611

set, computed over the correctly detected components (splitted components,612
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respectively) of the masks produced by the detection model associated to that613

dot. The standard deviation of the recall (precision) is shown as a horizontal614

(vertical) bar.615

In Figure 5a (correct detections), one can observe that all black dots (FCN-616

MN) are clustered in the upper-right corner of the graph, enclosed by a min-617

imum precision of approximately 65% and minimum recall of approximately618

60%, while the white dots (SW) are clustered in the lower-right corner of the619

graph with maximum precisions of 50% and recall ranging from approximately620

35% to 100%. Overall, both algorithms show relatively high recalls, but with621

FCN-MN reaching much larger precisions. We can point to the coarse detection622

of the SW positive patches as the main cause for low precision, as this is reduced623

when extra false positives are present in the positive mask.624

In Figure 5b (splits), one can observe again the overwhelming improvements625

of FCN-MN over SW, with all (but one) SW cases presenting precisions under626

60%, with the outlier showing a precision of nearly 70% and a similar distribu-627

tion of recall values.628

The segmentation results for the false alarm, the NA for each of the 27629

models of FCN-MN and each of the 40 models of SW, i.e., for each cell in the630

one-before-last column of (a non-summarized version of) Table 3 are reported631

graphically. Figure 6 shows these results grouped in the form of two histograms,632

one for the FCN-MN detection models (black) and one for the SW models633

(white). Bars in the histogram represent the proportion of detection models634

whose mean NA (over all false alarm components of all images) falls within the635

bin interval. The more concentrated to the left the better the algorithm, as this636

indicates that more detection models for that algorithm resulted in smaller NA637

(on average). When compared to the histogram of SW, one can observe that638

the histogram for FCN-MN is considerably more concentrated towards the left,639

with all FCN-MN models concentrated in a single bar at the left-most interval640

of [0.0, 1.0). For SW, the situation is rather different with bars at intervals as641

far to the right as [57.0, 58.0), that is, detection models with areas as large as642

58 times the bud area. These high values correspond to SW models with large643

window sizes, e.g., 1000px, that for low thresholds are classified as bud patches,644

rendering all its pixels as bud pixels.645
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(a)

(b)

Figure 5: Segmentation Precision-Recall scatterplots reporting the results for FCN-MN and

SW in black and white, respectively, with dots representing the segmentation precision and

segmentation recall average over all images in the test set (and bars representing standard

deviations) with one dot per hyper-parameter configuration (27 for FCN-MN and 40 for SW).

In (a) averages were computed over the segmentation precision and recall of correctly detected

components, while in (b), averages were computed over the segmentation precision and recall

of split components. Recall and precision standard deviations are represented by the horizontal

and vertical grey error bars.
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Figure 6: FCN-MN (black bars) and SW (white bars) histograms of the mean normalized

area NA of false alarm components with bars representing the proportion of detection models

whose mean NA falls within the bin interval.

3.2.3. Detailed analysis of localization metrics646

To conclude, this subsection presents a graphical representation of the lo-647

calization results reported in Table 3, that is, the normalized distance (ND)648

only for false alarms. Figure 7 summarizes the ND values reported in the cor-649

responding column of the (non-summarized version of) Table 3 in the form of650

two histograms, one for FCN-MN (black) and one for SW (white). Bars in the651

histogram represent the proportion of detection models (27 for FCN-MN and652

40 for SW) whose mean ND falls within the bin interval. The more concen-653

trated to the left the better the algorithm, as this indicates that more detection654

models for that algorithm resulted in smaller ND (on average). Here, again,655

the advantage of FCN-MN over SW is clear, with the histogram for FCN-MN656

more concentrated in the left-most part than that of SW, with the FCN-MN657

histogram running from the (0, 1] to the (7, 8] bin and the SW histogram run-658

ning from the (5, 6] towards the (9, 10] bin; and their respective maximums are659

at (3, 4] and (7, 8], respectively, indicating that most FCN false alarms are at660

a distance of 3 to 4 bud diameters, while most SW’s false alarms are at 7 to 8661
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Figure 7: FCN-MN (black bars) and SW (white bars) histograms of mean normalized distance

ND over all false alarm components with bars representing the proportion of detection models

whose mean ND falls within the bin interval.

bud diameters.662

4. Discussion and Conclusions663

Let us now discuss the results obtained by the proposed approach in the664

context of the problem of grapevine bud detection and its impact as a tool665

for measuring viticultural variables of interest, highlight the most important666

conclusions, and present future work.667

In this work we introduce FCN-MN, a fully convolutional network with Mo-668

bileNet architecture for the detection of grapevine buds in 2D images captured669

in natural field conditions in winter (i.e., no leaves or bunches) and containing670

a maximum of one bud.671

The experimental results confirmed our main hypothesis: that the detection672

quality achieved by FCN-MN is improved over the sliding windows detector673

(SW) in all three detection aspects: segmentation, correspondence identification674

and localization. Being SW the best bud detector known to these authors, one675

can conclude that FCN-MN is a strong contender in the state-of-the-art for676
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bud detectors. However, even improving over these, one can still wonder if it677

can address the main quality requirements of a practical measurement of the678

bud-related variables in Table 1.679

Quality performance could be assessed by the metrics reported in Table 3.680

In the best case, FCN-MN shows a detection-precision and detection-recall of681

97.7% and 100%, respectively, a mean (and standard deviation) segmentation-682

precision and segmentation-recall for correct detections of 98.1%(6.0) and 98.8%(3.4),683

respectively, and for splits 99.9%(0.1) and 74.7%(28.1), respectively. For false684

alarms, it shows a minimum NA of 0.04(0.09) and a minimum ND of 1.1(0.65).685

However, each of these best cases occur for different FCN-MN detectors. A686

better assessment must be conducted for a single detector. For that, we picked687

FCN-MN0.6
16s for its balanced quality overall. This detector reaches detection688

precision and recall of 95.6% and 93.6%, respectively, meaning than only 4.4%689

of all the detected connected components over all test images are false alarms,690

and that only 6.4% of all true buds could not be detected (i.e., resulted in detec-691

tion failure). Additionally, it resulted in S = 3, meaning only 3 of all detections692

were splitted, which has a segmentation precision of 99.4%(0.6) and a segmen-693

tation recall of 16.2%(10.6) on average. The recall is rather small, suggesting694

that the split is, in fact, the result of pixel-wise detection of the bud so sparse695

that it became disconnected. In contrast, all remaining detections were cor-696

rect (i.e., not splitted), reaching segmentation precisions of 92.2%(8.7), a rather697

similar value to that of splits, but a much larger mean segmentation recall of698

88.2%(13.3). Overall, this resulted in a mean Dice measure for the correct de-699

tections of 89.1%(10.7), demonstrating a considerable (mean) coverage of the700

true bud with only 11.8% of the bud pixels missing (on average) and only 7.8%701

of the detected pixels covering the background (on average). The false alarm702

results for this detector showed an NA = 0.08 and ND = 1.1, showing that703

these components are rather small covering only an area that is 8% in size of704

the total bud area (on average) and distant to the true bud by only 1.1(0.65)705

diameters, on average.706

Based on these results, what quality should one expect when the FCN-MN0.6
16s707

detector takes part in the measurement of the bud-related variables? For brevity,708

this point is discussed for three variables from Table 1: bud number, bud area,709
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and internode length.710

The case of bud number, for example, requires identifying correspondences for711

buds in the scene, so its quality will be impacted only by the metrics of detection712

precision and recall (95.6% and 93.6%, respectively). To evaluate this impact,713

we consider that a plant has approximately 240 buds on average. The number714

of buds per plant depends on many factors, such as training system, grape715

variety, type of treatment, time of year, among others, so this value is defined716

as indicative to achieve an approximate analysis. For this case, a detection717

precision of 95.6% would result in 11 buds counted in excess per plant, while a718

recall of 93.6% would result in the omission of 15 buds in the count.719

In addition, this model produces 3 splits with two components each (accord-720

ing to our detailed observation of the results), i.e. a counting error of 3 buds in721

excess over the 140 true buds in the test set, representing an error of 2.1% that722

for 240 buds per plant corresponds to 5 excess buds per plant, that summed723

to the 11 false positives from the detection precision gives a total of 16 extra724

buds, practically cancelling out with the omission error. But additionally, these725

errors could in practice be statistically characterized allowing for measurement726

correction towards more accurate values. Despite these good results, our ap-727

proach still has practical limitations for the measurement of bud number due728

to the impossibility of automatically associating counts of the same bud in two729

different images, making it difficult to massively measure the bud count of a730

plant or plot.731

The second variable of interest considered is bud area, where, in addition to732

identifying correspondences for the buds of a scene, it is necessary to segment it733

to estimate its area in pixels. Correspondence identification analysis is analogous734

to bud counting, so now only segmentation metrics are discussed. From the735

analysis developed in the previous paragraphs, it can be concluded that the736

segmentation errors by splits and false alarms have a low impact in the general737

results and, therefore, in the estimation of bud area. On the other hand, if we738

compensate the segmentation errors for the correct detections (i.e. 11.8% of the739

bud pixels missing and 7.8% of the detected pixels covering the background),740

the area estimation error is only 4%. For illustrative purposes, we see that this741

error is smaller than the precision error resulting from measuring the area of a742
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bud with a caliper. If we assume that the shape of a bud fits a circle, and that743

the typical diameter of a bud is 5 mm, the resulting area is 19.63mm2. Since a744

caliper has an accuracy of 0.1mm, the area precision error would be ±1.7mm2,745

equivalent to 8.6% of the total area, a figure that doubles the 4% error produced746

by our FCN-MN detector. To this difference, the error of manual measurement747

resulting from assuming a circular bud shape must be added, an unnecessary748

approximation in the case of FCN-MN.749

As in the case of counting, these good results in measurement precision are750

limited to achieve a practical use of this type of measurement because it is751

impossible to automatically associate area measurements of the same bud in752

two different images, making it difficult to systematically measure this variable753

for the buds of a plant or plot. Furthermore, in this case, the areas obtained754

are in pixels, which need to be converted into length or area magnitudes.755

Finally, let us consider the case of internode length, estimated by the dis-756

tance between buds of the same branch (by the closeness between buds and757

nodes), which involves the operations of correspondence identification and lo-758

calization. Again, correspondence identification analysis is analogous to bud759

counting, which in this case will result in the reporting of more than one dis-760

tance due to the detection of more than one component per bud. Among these761

distances, we understand that the worst case can occur between two false alarms762

when they are at the farthest side to the other bud, at a distance ND. On av-763

erage, ND is 1.1 bud diameters, equivalent to 5.5mm after taking a typical vine764

bud diameter to be 5mm, resulting in a 7.3% error in estimating the distance765

between buds/nodes by taking the typical bud distances to be approximately766

15cm. An important limitation of our approach for achieving a practical use767

of this measurement is the possibility of determining when two buds are on768

the same branch, which requires knowledge of the plant structure. Further-769

more, with our method, only the distance projected in the image plane could770

be measured, which can arbitrarily differ from the actual distance in 3D.771

The greatest impact errors occur because of the excess or omission of con-772

nected components, with the excess error exacerbated by the fact of associating773

detected buds with individual connected components. A possible improvement774

to mitigate these errors would be to apply some post-processing. One such775
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post-processing is spatial clustering of connected components grouping them by776

proximity. One could expect this to improve the results based on the small ar-777

eas of split and false alarm components. First, due to the closeness of the false778

alarms to the true bud (small ND) –as well as the splits and correctly detected779

components (overlapping with it)–, and the fact that true buds in real plants780

are typically tens or even hundreds of bud diameters apart, one could expect781

that a simple spatial clustering of the components would connect all of them782

together as a single, and correct, bud detection. Second, due to their small area783

-if clustered together- the false alarm components would only slightly reduce784

segmentation precision.785

Another possible post-processing would be to rule out small connected com-786

ponents, for example, whose area in pixels normalized to the total detected area787

(sum of the areas of all connected components) is less than a certain threshold.788

Improvements could be expected with this post-processing, since the results in789

this work show that false alarms present small areas in relation to the true bud.790

Lastly, connected component filters could be considered based on plant struc-791

ture, for example, ruling out connected components that are far away from (or792

do not overlap with) branches.793

One could also consider in future works some improvements to overcome the794

limitations for practical use mentioned above: (i) no associations between plant795

parts of different images, (ii) distance and area measurements in pixels, (iii)796

only 2D geometry, (iv) lack of knowledge of underlying plant structure, and (v)797

need of images with no leaves.798

One could also extend to buds the work of Santos et al. (2020) that addresses799

limitation (i) for grape bunches. Limitation (ii) could be easily addressed by800

adding to the visual scene some marker with known dimensions. This, how-801

ever, requires such a marker in every image captured, a problem that could be802

overcome by first producing a calibrated 3D reconstruction of the scene, i.e., a803

3D reconstruction calibrated with a single marker in one of its frames (Hartley804

and Zisserman, 2003; Moons et al., 2009). In this way, every 2D image could805

be calibrated against the 3D model, omitting the need for a marker. In addi-806

tion, a 3D reconstruction of the scene could address limitation (iii) by locating807

the detected buds in 3D space, following, for instance, the approach taken by808
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Dı́az et al. (2018). Finally, a solution to limitations (iv) and (v) would require809

an integrated approach involving the detection in 3D of branches and leaves,810

respectively.811
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